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LOCAL COMPLETENESS, LOWER SEMI CONTINUOUS

FROM ABOVE FUNCTIONS AND EKELAND’S PRINCIPLE

Carlos Bosch and René Leal

Abstract. In this paper we prove Ekeland’s variational principle in the
setting of locally complete spaces for lower semi continuous functions from
above and bounded below. We use this theorem to prove Caristi’s fixed
point theorem in the same setting and also for lower semi continuous
functions.

1. Introduction

The lower semi-continuous functions have been widely used to find solutions
to some minimization problems. Using this functions the fundamental idea of
the variational principle due to I. Ekeland [6] is to assign to a minimization
problem a slightly perturbed problem having a solution which is at the same
time an approximate solution to the original problem. This localization prop-
erty is very useful and explains the importance of the result. Since the discovery
of the Ekeland’s variational principle there have also appeared many extensions
or equivalent formulations of the principle [1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14]. The
results of this paper extend and generalize many results appearing recently in
the literature. Here we will use the more general concept of lower semicon-
tinuity from above introduced by Y. Chen, Y. J. Cho and L. Yang [5] in the
setting of locally complete spaces to get Ekeland’s variational principle and
some equivalence Caristi’s type theorem..

2. Preliminaries

Throughout this paper (E, τ) will denote a Hausdorff locally convex space
(briefly locally convex space) with topology τ , generated by a family of semi-
norms {ρα : α ∈ Λ} with Λ a set of indices. A disk B in E is a closed, bounded
and absolutely convex set. We denote by (EB, ρB) the linear span of B en-
dowed with the topology defined by the Minkowski functional associated with
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B. When B is bounded ρB is a norm, and the norm topology is finer than
the topology inherited from E. If (EB, ρB) is a Banach space we say that B

is a Banach disk. We say that E is a locally complete locally convex space
(briefly locally complete space) if each closed, bounded disk is a Banach disk.
There are many examples of locally complete spaces, in fact every sequential
complete space is locally complete. Typical examples of locally complete spaces
arise in the following way. Let (E, ‖ · ‖) be a Banach space and σ(E,E′) be
the weak topology in E then (E, σ(E,E′)) is a locally complete space and not
sequentially complete. For metrizable locally convex spaces these concepts are
equivalent.

The class Φ of perturbations we will use, is defined as the family of functions
ϕ : [0,∞) → [0,∞) which are subadditive, strictly increasing, continuous,
ϕ(0) = 0, and limx→∞ ϕ(x) = ∞ [13]. Clearly the inverse of ϕ exists and is
superadditive, strictly increasing and continuous, ϕ−1(0) = 0. Here ϕ is said
to be subadditive if ϕ(s + t) ≤ ϕ(s) + ϕ(t) for every s, t ∈ [0,∞), and ϕ−1 is
said to be superadditive if ϕ−1(s+ t) ≥ ϕ−1(s)+ϕ−1(t) for every s, t ∈ [0,∞).
Functions like ϕ(t) = t, ϕ(t) = n

√
t, ϕ(t) = ln(1 + t), are examples of elements

in Φ.
Although lower semi-continuity is important in this type of problem it is not

essential. Here we will use more general functions, lower semi-continuous from
above. A function f : E → R ∪ {∞} is said to be lower semi-continuous from
above at x0 if xn → x0 and f(x1) ≥ f(x2) ≥ · · · ≥ f(xn) ≥ · · · imply that
f(x0) ≤ limn→∞ f(xn) [5].

3. Ekeland-type variational principle

In this section we present a generalization of Ekeland-Type variational prin-
ciple for locally complete spaces and for lower semi-continuous from above
functions.

Theorem 3.1. Let (E, τ) be a locally complete space and f : E → R ∪ {∞} be
a proper, lower semicontinuous from above and bounded below function. Let ϕ
be in Φ and x0 be a point in Dom(f), that is f(x0) < ∞. Then for any Banach
disk B in E such that x0 ∈ EB there exists x∗ ∈ EB such that:

(a) f(x∗) + ϕ(ρB(x
∗ − x0)) ≤ f(x0) and

(b) f(x∗) < f(x) + ϕ(ρB(x
∗ − x)) for all x ∈ EB\{x∗}.

Proof. Let B be a Banach disk in E such that x ∈ (EB , ρB) and let

S(x) = {y ∈ EB : f(y) + ϕ(ρB(y − x)) ≤ f(x)}.
Observe that S(x) is nonempty and that if y is in S(x), then S(y) ⊂ S(x),
since for z ∈ S(y), we have

ϕ(ρB(z − x)) ≤ ϕ(ρB(z − y)) + ϕ(ρB(y − x))

≤ f(y)− f(z) + f(x) − f(y) = f(x)− f(z).
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Let g : EB → R ∪ {∞} be the function defined by,

g(x) =

{

f(x), x ∈ S(x0)
∞, x ∈ EB\S(x0).

Note that g is both ρB-lower semi-continuous from above and bounded below.
Now, starting from any x1 in S(x0) construct, inductively, xk in S(xk−1)

such that,

g(xk) ≤ inf{g(x) : x ∈ S(xk−1)}+
1

k

since xk ∈ S(xk−1), we obtain from the definition of S(xk−1),

g(xk) + ϕ(ρB(xk − xk−1)) ≤ g(xk−1)

then 0 ≤ ϕ(ρB(xk −xk−1)) ≤ g(xk−1)−g(xk). So the bounded below sequence
(g(xk)) is decreasing, that is, there is a real number r such that

r ≤ g(xk) ≤ g(xk−1).

So g(xk) ↓ r. Now let us prove that the sequence (xk) is ρB-Cauchy. By using
the triangle inequality and the subadditivity of ϕ we have for every δ > 0 that

ϕ(ρB(xk − xl))

≤ ϕ(ρB(xk − xk+1) + ρB(xk+1 − xk+2)) + · · ·+ (ρB(xl−1 − xl))

≤ ϕ(ρB(xk − xk+1)) + ϕ(ρB(xk+1 − xk+2)) + · · ·+ ϕ(ρB(xl−1 − xl))

≤ g(xk)− g(xk+1) + g(xk+1)− g(xk+2) + · · ·+ g(xl−1)− g(xl)

= g(xk)− g(xl) < δ if N(δ) ≤ k ≤ l for some N(δ) in N.

Since ϕ−1 is continuous then for every ǫ > 0 there is a δ > 0 and therefore
N(δ) ∈ N, such that if N(δ) ≤ k ≤ l, then g(xk) − g(xl) < δ and ϕ−1(g(xk)−
g(xl)) < ǫ. So ρB(xk − xl) < ϕ−1(g(xk) − g(xl)) < ǫ means that (xk) is ρB-
Cauchy. So E locally complete implies that there is x∗ ∈ EB such that (xk) is
ρB-convergent to x∗.

We still need to prove that (a) and (b) hold.
For (a) let hn : EB → R ∪ {∞} be the function define by hn(x) = f(x) +

ϕ(ρB(x − xn)), this functions are lower semi-continuous from above since it
is the sum of f |EB

which is lower semi-continuous from above added to a
continuous function. Furthermore if xk ∈ S(xk−1), then f(xk−1) ≥ f(xk) +
ϕ(ρB(xk − xk−1)) so adding ϕ(ρB(xk−1 − xn)) to both sides of the inequality
we get

f(xk−1) + ϕ(ρB(xk−1 − xn))

≥ f(xk) + ϕ(ρB(xk − xk−1)) + + · · ·+ ϕ(ρB(xk−1 − xn))

≥ f(xk) + ϕ(ρB(xk − xk−1) + + · · ·+ ρB(xk−1 − xn))

≥ f(xk) + ϕ(ρB(xk − xk−1 + xk−1 − xn))

≥ f(xk) + ϕ(ρB(xk − xn)).
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Now we have that (hn(xk)) is a decreasing sequence for every n ∈ N, and by
the lower semi-continuity from above hn(x

∗) ≤ limk→∞ hn(xk) then

f(x∗) + ϕ(ρB(x
∗ − xn)) ≤ lim

k→∞

[f(xk) + ϕ(ρB(xk − xn)]

≤ f(xk) + ϕ(ρB(xk − xn)) for every n, k ∈ N ∪ {0}.
So taking by taking k = n we have x∗ ∈ S(xk) for every k ∈ N , in particular

x∗ ∈ S(x0) and we have proved (a).
Now we will prove that S(x∗) = {x∗}. Suppose that x ∈ S(x∗) ⊂ S(xk−1)

then

f(x∗) ≤ f(xk) ≤ inf
x∈S(xk−1)

f(x) +
1

k
≤ f(x) +

1

k
for every k ∈ N.

So f(x∗) ≤ f(x) and then

f(x∗) ≤ f(x∗) + ϕ(ρB(x
∗ − x)) ≤ f(x) + ϕ(ρB(x

∗ − x)) ≤ f(x∗)

and we get ϕ(ρB(x
∗ − x)) = 0. Now by the continuity of ϕ−1, and the fact

that ϕ(0) = 0, we have that ρB(x
∗ − x) = 0 which means that x∗ = x then

S(x∗) = {x∗} if x ∈ EB , x 6= x∗, so we get inequality (b) in the theorem. If
x ∈ E\EB, it is clear that the inequality holds, since ρB(x) = ∞. �

Remark 3.2. A sequence (xn) is said to be locally convergent or Mackey con-
vergent to an element x of E, if there exists a Banach disc B in E such that
the sequence converges in EB with respect to ρB. For more details see Perez-
Carreras and Bonet [11]. With this in mind it is easy to generalized the previous
theorem to locally lower semi-continuous from above functions which are lower
semi-continuous from above functions that, for each x in E if (xn) is locally
convergent to x and f(xk) is decreasing, then f(x) ≤ limn→∞ f(xn).

4. Equivalences

Now we will give an equivalence between a Caristi-Kirk type fixed point theo-
rem, Takahashi type minimization theorem, an equilibrium version of Ekeland-
type Variational Principle and Theorem 3.1 for Qiu’s perturbations [13], lower
semi-continuous from above functions [5] and in the setting of locally complete
spaces.

Theorem 4.1. Let (E, τ) be a locally complete space, f : E → R be a lower
semicontinuous from above, bounded below function and let ϕ be in Φ. Then
the following statements are equivalent to Theorem 3.1:

(i) (Caristi-Kirk type fixed point theorem). Let 2E denotes the set of all
subsets of E and T : E → 2E be a multivalued map with nonempty values. If
there exists a Banach disk B in E such that for all x ∈ EB and y ∈ Tx we
have

(1) ϕ(ρB(x− y)) ≤ f(x)− f(y)
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holds, then T has a stationary point in EB, that is, there exists x∗ ∈ EB such
that {x∗} = Tx∗.

(ii) (Takahashi type minimization theorem). Assume that for each x′ ∈ E

with infz∈E f(z) < f(x′) there exists a Banach disk B in E such that x′ ∈ EB

and there exists x ∈ EB − {x′} such that ϕ(ρB(x
′ − x)) ≤ f(x′) − f(x). Then

there exists x∗ ∈ EB such that f(x∗) = infy∈EB
f(y).

(iii) (Equilibrium version of Ekeland-type Variational Principle). Let F :
E × E → R such that

1. For all x, y, z ∈ E, F (x, z) ≤ F (x, y) + F (y, z).
2. For each fixed x ∈ E, F (x, ·) : E → R is lower semi continuous from

above.
3. There exists x′ ∈ E such that infx∈E F (x′, x) > −∞.

Then there exists a Banach disk B in E, x′ ∈ EB and x∗ ∈ EB such that
(a) F (x′, x∗) + ϕ(ρB(x

′ − x∗)) ≤ 0,
(b) F (x∗, x) + ϕ(ρB(x

∗ − x)) > 0 for all x ∈ EB\{x∗}.
Proof. We will prove Theorem 3.1 =⇒ (i) =⇒ (ii) ⇒ (iii) =⇒ Theorem 3.1.

From Theorem 3.1 part (b) there exists x∗ ∈ EB such that

f(x∗)− f(x) < ϕ(ρB(x
∗ − x)) for all x ∈ EB\{x∗}.

We claim that {x∗} = Tx∗. Otherwise if y ∈ Tx∗\{x∗} from (1) we have

ϕ(ρB(x
∗ − y)) ≤ f(x∗)− f(y)

which contradicts the previous inequality. Note that also from inequality (1),
for all x ∈ EB and y ∈ Tx, we must have ρB(x− y) < ∞, this means y ∈ EB ,
i.e., Tx ⊂ EB for all x ∈ EB .

(i)=⇒(ii). Define T : E → 2E as

T (x) =

{

{y ∈ EB : ϕ(ρB(x− y)) ≤ f(x)− f(y)} if x ∈ EB .

E if x ∈ E\EB.

Note that T satisfies inequality (1). Then by (i) there exists x∗ ∈ EB

such that {x∗} = Tx∗. Now by assumption for each x′ ∈ EB there exists
x ∈ EB\{x′}, we have x ∈ Tx′ and then Tx′\{x′} 6= ∅ whenever infz∈E f(z) <
f(x′) hence we must have infz∈EB

f(z) = f(x∗).
(ii)=⇒(iii). Define a function f : E → R by f(x) = F (x′, x) for all

x ∈ E where x′ is the element given in condition (iii-3). Then we have
infx∈E F (x′, x) > −∞ which means that f is bounded below and by (iii-2),
f is proper lower semicontinuous from above. Let B ⊂ E be a Banach disk
such that x′ ∈ EB . Now suppose that in (iii), (3-b) does not hold. Then for all
x ∈ EB there exists y ∈ EB\ {x} and F (x, y)+ϕ(ρB(x−y)) ≤ 0. By condition
(iii-1), we have F (x′, y) − F (x′, x) ≤ F (x, y) so using this and the previous
inequality:

(2) F (x′, y)− F (x′, x) + ϕ(ρB(x− y)) ≤ F (x, y) + ϕ(ρB(x− y)) ≤ 0

that is, for all x ∈ EB there exists y ∈ EB − {x} and

f(y)− f(x)+ ϕ(ρB(x−y)) ≤ 0, or equivalently ϕ(ρB(x−y)) ≤ f(x)− f(y).
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Then by (ii), there exists x∗ ∈ EB such that f(x∗) ≤ f(z) for all z ∈ EB. By
substituting x by x∗ in inequality (2), we obtain that there exists y ∈ EB\ {x∗}
and ϕ(ρB(x

∗−y))≤ f(x∗)−f(y). Now since ρB is a norm in EB, ρB(x
∗−y) > 0,

and then f(y) < f(x∗) which is a contradiction.
Finally let us prove that (iii) ⇒ Theorem 3.1. Define F : E × E → R as

F (x, y) = f(y)− f(x) for all x, y ∈ E, with x′ ∈ dom(f). Then by hypothesis,
F satisfies all the conditions of (iii). Then (iii) implies the existence of x∗ ∈ EB

such that (a) and (b) hold. �
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E-mail address: bosch@itam.mx
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