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ON SUPERLINEAR p(x)-LAPLACIAN-LIKE PROBLEM

WITHOUT AMBROSETTI AND RABINOWITZ CONDITION

Ge Bin

Abstract. This paper deals with the superlinear elliptic problem with-
out Ambrosetti and Rabinowitz type growth condition of the form:






−div

(

(1 +
|∇u|p(x)√
1+|∇u|2p(x)

)|∇u|p(x)−2∇u

)

= λf(x, u), a.e. in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, λ > 0 is
a parameter. The purpose of this paper is to obtain the existence results
of nontrivial solutions for every parameter λ. Firstly, by using the moun-
tain pass theorem a nontrivial solution is constructed for almost every
parameter λ > 0. Then we consider the continuation of the solutions.
Our results are a generalization of that of Manuela Rodrigues.

1. Introduction

During the last fifteen years, variational problems and partial differential
equations with various types of nonstandard growth conditions have become
increasingly popular. This is partly due to their frequent appearance in ap-
plications such as the modeling of electrorheological fluids [1, 12] and image
processing [2], but these problems are very interesting from a purely mathe-
matical point of view as well.

In this paper, we consider the following nonlinear eigenvalue problems for
p(x)-Laplacian-like operators originated from a capillary phenomena of the
following form:

(P )







−div

(

(1 + |∇u|p(x)√
1+|∇u|2p(x)

)|∇u|p(x)−2∇u

)

= λf(x, u), a.e. in Ω,

u = 0, on ∂Ω,
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where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, λ > 0 is a
parameter.

M. Manuela Rodrigues [11] established the existence of nontrivial solution
of problem (P ), by assuming the following conditions:

(f1) f : Ω× R → R satisfies Caratheodory condition and

|f(x, t)| ≤ c1 + c2|t|β(x)−1, ∀(x, t) ∈ Ω× R,

where β ∈ C+(Ω) and 1 < β(x) < p∗(x) for x ∈ Ω, p∗(x) = Np(x)
N−p(x) if p(x) < N ,

p∗(x) = ∞ if p(x) ≥ N .
(f2) ∃M > 0, θ > p+ such that

0 < θF (x, t) ≤ tf(x, t), ∀|t| ≥ M, x ∈ Ω,

where F (x, t) =
∫ t

0 f(x, s)ds.

(f3) f(x, t) = o(|t|p+−1), t → 0 for x ∈ Ω uniformly and β− > p+.
It is well known, condition (f2) is quite important not only to ensure that the

Euler-lagrange functional associated to problem (P ) has a mountain pass geom-
etry, but also to guarantee that Palais-Smale sequence of the Euler-Lagrange
functional is bounded. But this condition is very restrictive eliminating many
nonlinearities. We recall that (f2) implies a weaker condition

F (x, t) ≥ c3|t|θ − c4, c3, c4 > 0, (x, t) ∈ Ω× R and θ > p+.

The above condition implies another much weaker condition, which is a conse-
quence of the superlinearity of f at infinity:

(f4) lim
|t|→∞

F (x,t)

|t|p+
= +∞, uniformly a.e. x ∈ Ω.

Because the p(x)-Laplacian possesses more complicated nonlinearities than
Laplacian and p-Laplacian, for example, it is inhomogeneous, thus our problem
is much more difficult.

The main result of this paper is the following theorem.

Theorem 1.1 (Main Theorem). Under hypotheses (f1), (f3), (f4) and

(f5) there exists t0 > 0, such that
f(x,t)

t2p
+

−1
is increasing in t ≥ t0 and decreas-

ing in t ≤ −t0, ∀x ∈ Ω.
Moreover, f ∈ C(Ω × R), then problem (P ) has a nontrivial weak solution,

for all λ > 0.

Example. Function f(x, t) = (β(x)ln( t3 ) + 3)tβ(x)−1 (F (x, t) = tβ(x)ln( t3 ))

where β ∈ C+(Ω) satisfies condition (f5), but it does not satisfy (f2) if 2β
− >

p+ > β+.

Remark 1.2. In fact our result still holds if we consider a weaker condition than
(f5), which is,

(f5)
′ there is C∗ > 0 such that f(x, t)t− θF (x, t) ≤ f(x, s)s− θF (x, s) +C∗

for all 0 < t < s or s < t < 0.
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This paper is organized in the following way: in Section 2, we recall some
necessary preliminaries, which will be used in our investigation in Section 3; In
Section 3, we prove the main result of the paper.

2. Preliminaries

In this part, we introduce some definitions and results which will be used in
the next section.

Firstly, we introduce some theories of Lebesgue-Sobolev space with variable
exponent. The detailed description can be found in [3, 4, 6, 8, 7, 10].

Write
C+(Ω) = {h ∈ C(Ω) : h(x) > 1 for any x ∈ Ω},
h− = min

x∈Ω
h(x), h+ = max

x∈Ω
p(x) for any h ∈ C+(Ω).

Obviously, 1 < h− ≤ h+ < +∞.
Denote by U(Ω) the set of all measurable real functions defined on Ω. Two

functions in U(Ω) are considered to be one element of U(Ω), when they are
equal almost everywhere.

For p ∈ C+(Ω), define

Lp(x)(Ω) = {u ∈ U(Ω) :
∫

Ω

|u(x)|p(x)dx < +∞},

with the norm |u|Lp(x)(Ω) = |u|p(x) =inf{λ > 0 :
∫

Ω |u(x)
λ

|p(x)dx ≤ 1}, and

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}
with the norm ‖u‖W 1,p(x)(Ω) = |u|p(x) + |∇u|p(x).

Denote W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(x)(Ω).
We remember that the variable exponent Lebesgue spaces are separable and

reflexive Banach spaces. Denote by Lq(x)(Ω) the conjugate Lebesgue space of
Lp(x)(Ω) with 1

p(x) +
1

q(x) = 1, then the Hölder type inequality
∫

Ω
|uv|dx ≤ ( 1

p−
+ 1

q−
)|u|p(x)|v|q(x), u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω)

holds. Furthermore, define mapping ρ : Lp(x)(Ω) → R by

ρ(u) =

∫

Ω

|u(x)|p(x)dx,

then the following relations hold

| u |p(x)> 1 ⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x),

| u |p(x)< 1 ⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

Proposition 2.1 ([7]). In W
1,p(x)
0 (Ω) the Poincare’s inequality holds, that is,

there exists a positive constant C0 such that

|u|p(x) ≤ C0|∇u|p(x), ∀u ∈ W
1,p(x)
0 (Ω).
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So |∇u|p(x) is an equivalent norm in W
1,p(x)
0 (Ω). We will use the equivalent

norm in the following discussion and write ‖u‖ = |∇u|p(x) for simplicity.

Proposition 2.2 ([5]). If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then
the embedding from W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous.

Consider the following function:

J(u) =

∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)
)

dx, u ∈ W
1,p(x)
0 (Ω).

We denote A= J ′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗, then

〈A(u), v〉 =
∫

Ω

(

|∇u|p(x)−2 +
|∇u|2p(x)−2

√

1 + |∇u|2p(x)

)

(∇u,∇v)RN dx

for all u, v ∈ W
1,p(x)
0 (Ω).

Proposition 2.3 ([1]). Set X = W
1,p(x)
0 (Ω), A is as above, then

(1) A : X → X∗ is a convex, bounded and strictly monotone operator;

(2) A : X → X∗ is a mapping of type (S)+, i.e., if un
w→ u in X and

lim sup
n→∞

〈A(un), un − u〉 ≤ 0, implies un → u in X ;

(3) A : X → X∗ is a homeomorphism.

3. Existence theorems

Now we introduce the energy functional ϕ : W
1,p(x)
0 (Ω) → R associated with

problem (P ), defined by

ϕλ(u) =

∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)
)

dx

− λ

∫

Ω

F (x, u)dx, u ∈ W
1,p(x)
0 (Ω),

which is due to [11].
From the hypotheses on f , it is standard to check that

ϕλ ∈ C1(W
1,p(x)
0 (Ω),R)) and its Gateaux derivative is

〈ϕ′
λ(u), v〉 =

∫

Ω

(

|∇u|p(x)−2 +
|∇u|2p(x)−2

√

1 + |∇u|2p(x)

)

(∇u,∇v)RN dx

− λ

∫

Ω

f(x, u)vdx, u, v ∈ W
1,p(x)
0 (Ω).

Lemma 3.1. (a) Under the condition (f4), the functional ϕλ is unbounded

from below.

(b) Under the conditions (f1) and (f3), u = 0 is a strict local minimum for

ϕλ.
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Proof. (a) From (f4), it is follows, for all M > 0 there exists CM > 0, such
that

(3.1) F (x, t) ≥ Mtp
+ − CM , ∀x ∈ Ω, t ≥ 0.

Take φ ∈ C∞
0 (Ω) \ {0} with φ(x) > 0. For t > 1, from (3.1) we have

ϕλ(tφ) =

∫

Ω

1

p(x)

(

|∇tφ|p(x) +
√

1 + |∇tφ|2p(x)
)

dx− λ

∫

Ω

F (x, tφ)dx

≤ tp
+

∫

Ω

(

|∇φ|p(x) +
√

1 + |∇φ|2p(x)
)

dx− λMtp
+

∫

Ω

|φ|p+

dx

+ λCM |Ω|

≤ tp
+

∫

Ω

(

|∇φ|p(x) +
√

1 + |∇φ|2p(x)
)

dx− λMtp
+

∫

Ω

|φ|p+

dx

+ λCM |Ω|

= tp
+

[
∫

Ω

(

|∇φ|p(x) +
√

1 + |∇φ|2p(x)
)

dx− λM

∫

Ω

|φ|p+

dx

]

+ λCM |Ω|,
where |Ω| denotes the Lebesgue measure of Ω. If M is large, then

lim
t→∞

ϕλ(tφ) = −∞.

This proves (a).
(b) From (f3), for any ε > 0, there exists δ = δ(ε) > 0, such that

F (x, t) ≤ ε|t|p+

, ∀t ∈ (−δ, δ), x ∈ Ω.

On the other hard, by (f1) and the mean value theorem, there exists c5 > 0
such that,

F (x, t) ≤ c5|t|β(x) for a.e. x ∈ Ω and |t| ≥ δ.

Therefore, it is follows that

F (x, t) ≤ ε|t|p+

+ c5|t|β(x) for a.e. x ∈ Ω and all t ∈ R.

For u ∈ W 1,p
0 (Ω) and ‖u‖ < 1, we have

ϕλ(u) =

∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)
)

dx− λ

∫

Ω

F (x, u)dx

≥ 2

p+

∫

Ω

|∇u|p(x)dx− λε

∫

Ω

|u|p+

dx− λc5

∫

Ω

|u|β(x)dx

≥ 2

p+
‖u‖p+ − λεCp+

0 ‖u‖p+ − c5C
β−

0 ‖u‖β−

,

here we use the continuity(in fact, compactness) embedding W
1,p(x)
0 (Ω) into

Lβ(x)(Ω) (recall that 1 < β(x) < p∗(x)) and Poincare’s inequality. Then

(3.2) ϕλ(x) ≥ (
2

p+
− λεCp+

0 )‖u‖p+ − λc5C
β−

0 ‖u‖β−

.
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For given λ > 0, we choose ε = ε(λ) > 0, such that ε < 1

λC
p+

0 p+
. Then from

(3.2) and Poincare’s inequality we have

(3.3) ϕλ(x) ≥
1

p+
‖u‖p+ − c6‖u‖β

−

for some c6 > 0 and all u ∈ W
1,p(x)
0 (Ω).

Since p+ < β−, if we choose ρ = ρ(λ) > 0 small, from (3.3), we see that
{ϕλ(u) : ‖u‖ = ρ} ≥ d(λ) > 0. So far, we complete the proof. �

Fix 0 < λ0 < µ0. Now we can see that geometry on ϕλ works uniformly on

[λ0, µ0]. By choosing ε > 0 such that 2
p+ − µ0εC

p+

0 ≥ 1
p+ , we obtain that

ϕλ(u) ≥
1

p+
‖u‖p+ − c7‖u‖β

−

, ∀u ∈ W
1,p(x)
0 (Ω), 0 < λ ≤ µ0, c7 > 0.

That is, there exist ρ > 0 and r > 0, such that

(3.4) ϕλ(u) ≥ r, ‖u‖ = ρ, ∀λ ≤ µ0.

By choosing e ∈ W
1,p(x)
0 (Ω), such that ϕλ0(e) < 0, we infer that

ϕλ(e)

λ
<

ϕλ0(e)

λ0
< 0, λ0 ≤ λ ≤ µ0.

Also we have

(3.5)
ϕλ(u)

λ
≤ ϕµ(u)

µ
, ∀u ∈ W

1,p(x)
0 (Ω), µ < λ.

Define

T =: {γ : [0, 1] → W
1,p(x)
0 (Ω) | γ is continuous and γ(0) = 0 and γ(1) = e}

and for λ0 ≤ λ ≤ µ0, let cλ =: inf
γ∈T

max
t∈[0,1]

ϕλ(γ(t)).

We recall that the map c : [λ0, µ0] → R+, given by c(λ) = cλ, is bounded
from below by cµ0 > 0.

In fact, (3.5) implies the monotonicity of cλ
λ
, while the estimate (3.4) implies

cλ ≥ r > 0.
Now, we are in the position to check the left semi-continuity of cλ

λ
. Fix

µ ∈ [λ0, µ0] and ε > 0. Then fix γ ∈ T such that

c(µ) ≤ max
t∈[0,1]

ϕµ(γ(t)) ≤ c(µ) +
εµ

8
.

Let R0 = max
t∈[0,1]

|
∫

Ω
F (x, γ(t))dx|. Then, for λ > µ

2 such that 1
λ
< 1

µ
+ ε

2cµ
,

we have
ϕλ(γ(t)) = (ϕλ(γ(t))− ϕµ(γ(t))) + ϕµ(γ(t))

≤ ϕµ(γ(t)) + (µ− λ)

∫

Ω

F (x, γ(t))dx

≤ R0|λ− µ|+ cµ +
εµ

8
, ∀t ∈ [0, 1].
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That is, cλ ≤ cµ + εµ
4 , if |µ− λ| < εµ

8R0
. Hence, if µ > λ, it follows that

cµ
µ

− ε <
cµ
µ

≤ cλ
λ

≤ cµ
λ

+
ε

2
≤ cµ

µ
+ ε.

Lemma 3.2 ([9]). There exists K > 0, such that

‖ϕ′
µ(u)− ϕ′

λ(u)‖(W 1,p(x)
0 (Ω))∗

≤ K(1 + ‖u‖β+−1)|µ− λ|, ∀λ, µ > 0.

Proof. For β ∈ C+(Ω), define β
′(x) such that 1

β(x) +
1

β′(x) = 1, ∀x ∈ Ω. By (f1),

we have

|f(x, t)|β′(x) = |f(x, t)|
β(x)

β(x)−1 ≤ d1 + d2|t|β(x), ∀x ∈ Ω, t ∈ R

for some constants d1, d2 > 0, and then
∫

Ω

|f(x, t)|β′(x)dx ≤ d1|Ω|+ d2

∫

Ω

|u|β(x)dx.

Therefore, for any u ∈ W
1,p(x)
0 (Ω), we have

∫

Ω

|f(x, t)|β′(x)dx ≤ d3 + d4‖u‖β
+

,

where d3 and d4 are positive constants.

Thus, for all v ∈ W
1,p(x)
0 (Ω) with ‖v‖ ≤ 1, we have

|〈ϕ′
µ(u), v〉 − 〈ϕ′

λ(u), v〉| ≤ (λ− µ)

∫

Ω

f(x, u)vdx.

Thus,

|〈ϕ′
µ(u), v〉 − 〈ϕ′

λ(u), v〉| ≤ |λ− µ|
∫

Ω

|f(x, u)||v|dx

≤ 2|λ− µ||f(x, u)|β′(x)|v|β(x)

≤ 2C0|λ− µ|(d3 + d4‖u‖β
+

)
β+

−1

β+ ‖v‖.
So there exists constant K > 0 such that

‖ϕ′
µ(u)− ϕ′

λ(u)‖(W 1,p(x)
0 (Ω))∗

≤ K(1 + ‖u‖β+−1)|µ− λ|, ∀λ, µ > 0.
�

Remark 3.3. We recall that the map b : [λ0, µ0] → R+, given by b(λ) = cλ
λ
, is

monotone decreasing. Thus, b(λ) and c(λ) are differentiable at almost all value
λ ∈ (λ0, µ0).

The proof of the next lemma is done by adapting some arguments employed
in the proof of Lemma 3.3 in [13] and Lemma 2.5 in [14].

Lemma 3.4. Suppose the map c : [λ0, µ0] → R+, given by c(λ) = cλ, is

differentiable in µ, then there exists a sequence {un} ⊂ W
1,p(x)
0 (Ω) such that

ϕµ(un) → cµ, ϕ
′
µ(un) → 0, and ‖un‖p

0 ≤ C as n → ∞,
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where p0 = p+ if ‖un‖ ≤ 1, p0 = p− if ‖un‖ > 1, and C = p+cµ + p+µ(2 −
c′(µ)) + 1.

Proof. Assume, by contradiction, that the lemma was false. Then ‖ϕ′
µ(un)‖∗ ≥

2δ for all u ∈ Nµ
δ = {u ∈ W

1,p(x)
0 (Ω) : ‖u‖p0 ≤ C, |ϕµ(u)− cµ| ≤ δ}.

Let c8 be such that
(3.6)
∣

∣

∣

∣

∫

Ω

F (x, u(x))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

ϕµ(u)−
∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)
)

dx

∣

∣

∣

∣

≤ |ϕµ(u)|+
∣

∣

∣

∣

∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)
)

dx

∣

∣

∣

∣

≤ 1

µ

[

cµ + δ +
1

p−

∫

Ω

(2|∇u|p(x) + 1)dx

]

≤ 1

µ

[

cµ + δ +
1

p−
(|Ω|+ 2‖u‖p0

)

]

≤ c8, ∀u ∈ Nµ
δ .

Set V : Nµ
δ → W 1,p

0 (Ω) to be a locally Lipschtz pseudo-gradient vector field,
‖V ‖ ≤ 1 and

〈ϕ′
µ(u), V (u)〉 ≤ −δ, ∀u ∈ Nµ

δ (see [10]).

Now, fix {λn} a sequence in (λ0, µ0) such that µ < λn+1 < λn, and λn

converges to µ, |λn − µ| ≤ min{ δ
2c ,

δ
2}, and |cµ − cλn

| ≤ δ
4 .

For each n, let γn ∈ T be such that

(3.7) max
t∈[0,1]

ϕµ(γn(t)) ≤ cµ + (λn − µ).

Consider the open set

An = {t ∈ [0, 1] : ϕλn
(γn(t)) > cλn

− (λn − µ)}.

By the definition of cλn
, we know that An is nonempty.

If v ∈ γn(An), then from (3.7), we have,
∫

Ω

F (x, v)dx =
ϕµ(v)− ϕλn

(v)

λn − µ
≤ cµ − cλn

λn − µ
+ 2 = −c′(µ) + 2 + on(1),

where we have used cµ − cλn
= (c′(µ) + on(1))(µ− λn).

Since
∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)
)

dx = ϕµ(v) + µ

∫

Ω

F (x, v)dx

and
∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)
)

dx ≥ 1

p+

∫

Ω

|∇u|p(x)dx ≥ 1

p+
‖v‖p0

,
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we obtain for v ∈ γn(An),

‖v‖p0 ≤ cµ + (λn − µ) + µ(−c′(µ) + 2 + on(1))

= p+cµ + p+µ(2− c′(µ)) + p+(λn − µ) + µon(1)

≤ C

for n large.
It is easy to see that inequality (3.7) is satisfied for v ∈ γn(An). Thus

γn(An) ⊆ Nµ
δ , since,

cλn
− (λn − µ) ≤ ϕλn

(v), ϕµ(v) ≤ cµ + (λn − µ).

(3.8) |ϕλn
(v)− ϕµ(v)| = (λn − µ)|

∫

Ω

F (x, v)dx| ≤ c8|λn − µ|,

for n large

cµ − δ < ϕµ(v) < cµ + δ, ∀v ∈ γn(An).

So,

〈ϕ′
λn

(u), V (u)〉 ≤ − δ

2
for all u ∈ Nµ

δ .

Now consider a Lipschitz continuous cut-off function η such that 0 ≤ η ≤
1; η(x) = 0, x /∈ Nµ

δ ; η(x) = 1, x ∈ Nµ
δ
2

.

Let φ be the flow generated by ηV , that is






∂φ(u, r)

∂r
= η(φ(u, r))V (φ(u, r)), on R+,

φ(u, 0) = u.

From the uniqueness result of ODE we have:
If u /∈ Nµ

δ , then φ(u, r) = u, ∀r ≥ 0;
If u ∈ Nµ

δ , then φ(u, r) ∈ Nµ
δ , ∀r ≥ 0.

⇒ (i) If u ∈ W 1,p
0 (Ω), then 〈ϕ′

λn
(φ(u, r)), ∂φ(u,r)

∂r
〉 ≤ 0,

⇒ (ii) If φ(x, r) ∈ Nµ
δ
2

, ∀r ∈ [0, r0], then

ϕλn
(φ(u, r)) ≤ ϕλn

(u)− δ

2
r0.

Since e /∈ Nµ
δ , we have φ(e, r) = e and φ(0, r) = 0, for all r ≥ 0, and then

φ(γ, r) ∈ T , for all real r and γ ∈ T .
This implies that hn(t) = φ(γn(t), 1) is a continuous path in T such that

ϕλn
(hn(t)) ≤ ϕλn

(γn(t)), and then for its maximum point sn ∈ [0, 1], we should
have sn ∈ An, and

cµ − on(1) = cλn
≤ max

t∈[0,1]
ϕλn

(hn(t)) = ϕλn
(hn(sn)) ≤ ϕλ(γn(sn))−

δ

2
.

On the other hand, from (3.7) and (3.8), we have

ϕλ(γn(sn)) ≤ ϕµ(γn(sn)) + c3|λn − µ| ≤ cµ + (1 + c3)|λn − µ|,
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which is a contradiction. �

The next theorem follows directly from Lemma 3.4.

Theorem 3.5. For almost all λ > 0, cλ is a critical value for ϕλ.

Proof. From Lemma 3.4, {un}n≥1 is bounded and so we may assume that

un ⇀ u(weak convergence) in W
1,p(x)
0 (Ω) and un → u in Lβ(x)(Ω).

As above from the choice of {un}n≥1 ⊆ W
1,p(x)
0 (Ω), we have

∫

Ω f(x, un)(un−
u)dx → 0, that is

〈A(un), un − u〉 → 0 ⇒ un → u in W
1,p(x)
0 (Ω).

So, ϕµ(u) = cµ, ϕ
′
µ(u) = 0. That is u is a critical point of ϕµ. �

Theorem 3.6. For almost all λ > 0, problem (P ) has a nontrivial weak solu-

tion.

Proof. As cλ is left continuous, from Lemma 3.4, for each µ > 0, we can fix

sequences {un} ⊆ W
1,p(x)
0 (Ω), and {λn} ⊆ R, such that

λn → µ, cλn
→ cµ as n → ∞.

ϕλn
(un) = cλn

, ϕ′
λn

(un) = 0.

We claim that {un} is bounded. Suppose that this is not true. Then we can
assume that ‖un‖ → +∞, as n → +∞. Set wn = un

‖un‖
, n ≥ 1.

We may assume that

wn → w weakly in W
1,p(x)
0 (Ω);

wn → w in Lp(x)(Ω);

wn → w in Lβ(x)(Ω); (by 1 < β(x) < p∗(x))

wn(x) → w(x) a.e. on Ω;

and |wn(x)| ≤ h(x) a.e. on Ω, for n ≥ 1 and h ∈ Lp(x)(Ω).
Let Ω0 = {x ∈ Ω : w(x) 6= 0}. If x ∈ Ω0, then

lim
n→∞

F (x, un(x))

|un(x)|p+

|un(x)|p
+

‖un‖p+ = lim
n→∞

F (x, un(x))

|un(x)|p+ |wn(x)|p
+

= +∞ (by (f4)).

Applying the Fatou’s lemma, we have

lim
n→∞

∫

Ω

F (x, un(x))

|un(x)|p+ |wn(x)|p
+ ≤ 1

µp−
.

We conclude that Ω0 has zero measure and w = 0 a.e. in Ω.
Let ϕλn

(tnun) = max
t∈[0,1]

ϕλn
(tun), we have

ϕλn
(txn) ≤ ϕλn

(tnxn)
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and ϕ′
λn

(tnun) = 0, hence 〈ϕ′
λn

(tnun), tnun〉 = 0, that is

∫

Ω

[

|tn∇un|p(x) +
|tn∇un|2p(x)

√

1 + |tn∇un|2p(x)

]

dx = λn

∫

Ω

tnunf(x, tnun)dx.

Next, we show that

(3.9)

1

p(x)

√

1 + |tn∇un|2p(x) −
1

2p+
|tn∇un|2p(x)

√

1 + |tn∇un|2p(x)

≤ 1

p(x)

√

1 + |∇un|2p(x) −
1

2p+
|∇un|2p(x)

√

1 + |∇un|2p(x)
.

In order to prove this, we define the following functional f : [0, 1] → ∞:

f(t) = p1
√
1 + atp − p2

atp√
1 + atp

,

where p, p1, p2, a are positive constants with p1 ≥ 2p2 and p > 1. Obviously,
f ′(t) ≥ 0, ∀t ∈ [0, 1]. Thus we deduce that f(tn) ≤ f(1), that is

(3.10) p1
√

1 + atpn − p2
atpn√
1 + atpn

≤ p1
√
1 + a− p2

a√
1 + a

.

Finally, we notice that by taking in (3.10) p1 = 1
p(x) , p2 = 1

2p+ and a =

|∇un|2p(x), we deduce that (3.9) holds true.
Therefore, from (f5) and (3.9), we have

ϕλn
(tun) ≤ ϕλn

(tnun)−
1

2p+
〈ϕ′

λn
(tnun), tnun〉

=

∫

Ω

[

1

p(x)
− 1

2p+

]

|tn∇un|p(x)dx +

∫

Ω

1

p(x)

√

1 + |tn∇un|2p(x)dx

+ λn

∫

Ω

[

1

2p+
tnunf(x, tnun)− F (x, tnun)

]

dx

− 1

2p+

∫

Ω

|tn∇un|2p(x)
√

1 + |tn∇un|2p(x)
dx

≤
∫

Ω

[

1

p(x)
− 1

2p+

]

|∇un|p(x)dx+

∫

Ω

1

p(x)

√

1 + |∇un|2p(x)dx

+ λn

∫

Ω

[

1

2p+
tnunf(x, tnun)− F (x, tnun)

]

dx

− 1

2p+

∫

Ω

|∇un|2p(x)
√

1 + |∇un|2p(x)
dx

≤
∫

Ω

[

1

p(x)
− 1

2p+

]

|∇un|p(x)dx+

∫

Ω

1

p(x)

√

1 + |∇un|2p(x)dx

+ λn

∫

Ω

[

1

2p+
unf(x, un)− F (x, un) +

C∗

2p+

]

dx
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− 1

2p+

∫

Ω

|∇un|2p(x)
√

1 + |∇un|2p(x)
dx

= cλn
+

λnC∗

2p+
|Ω|

for all t ∈ [0, 1].

On the other hard, for all R > 1, set R1 = (θR)
1

p− ,

ϕλn
(R1wn) =

∫

Ω

1

p(x)

(

|R1∇wn|p(x) +
√

1 + |R1∇wn|2p(x)
)

dx

− λn

∫

Ω

F (x,R1wn)dx

≥ 2

θ
Rp−

1 ‖wn‖p
0 − λn

∫

Ω

F (x,R1wn)dx

= 2R− λn

∫

Ω

F (x,R1wn)dx

≥ R,

which contradicts ϕλn
(R1wn) ≤ cλn

+ λnC∗

θ
|Ω|, for n large.

Now we have a bounded sequence {xn} such that

ϕµ(xn) → cµ and ϕ′
µ(xn) = 0, n → ∞.

The proof is done. �
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