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DING PROJECTIVE MODULES WITH RESPECT TO A

SEMIDUALIZING MODULE

Chunxia Zhang, Limin Wang, and Zhongkui Liu

Abstract. In this paper, we introduce and discuss the notion of DC-
projective modules over commutative rings, where C is a semidualizing
module. This extends Gillespie and Ding, Mao’s notion of Ding projective
modules. The properties of DC -projective dimensions are also given.

Introduction

Throughout this paper all rings are commutative with identity, all modules
are unitary modules. C is a fixed semidualizing R-module, cf. Definition 0.1
below.

In basic homological algebra, projective, injective and flat modules play an
important and fundamental role. It is by now the homological properties of
the Gorenstein projective and injective modules have been studied by many
authors, some references are [3, 4, 9, 12]. Over a commutative Noetherian ring,
Holm and Jørgensen in [14] introduced the C-Gorenstein projective and C-
Gorenstein injective modules using semidualizing modules and their associated
projective, injective classes. White in [19] further considered these modules
when R is a commutative ring and she called C-Gorenstein projective as GC -
projective and C-Gorenstein injective as GC-injective. In particular, many
general results about the Gorenstein projectivity and Gorenstein injectivity in
[7, 12, 13] were generalized in [19]. On the other hand, Ding et al. in [5]
and [6] considered two special cases of the Gorenstein projective and Goren-
stein injective modules using projective, flat classes and injective, FP-injective
classes, which they called strongly Gorenstein flat and Gorenstein FP-injective
modules, respectively. The same modules were studied by Gillespie in [10]
with different names Ding projective and Ding injective modules, respectively.
Thus, a natural question arises: What are the counterparts to Ding projective
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and Ding injective modules using semidualizing modules and their associated
projective, flat classes and injective, FP-injective classes?

In this paper, we shall introduce the notions of DC -projective and DC -
injective modules which answer the question above. Also some properties of
DC-projective and DC -injective modules and dimensions are given.

Next we shall recall some notions and definitions which we need in the later
sections.

The study of semidualizing modules over commutative Noetherian rings was
initiated independently (with different names) by Foxby [8], Golod [11], and
Vasconcelos [18].

Definition 0.1. An R-module C is semidualizing if

(1) C admits a degreewise finite projective resolution,
(2) the natural homothety morphism R → HomR(C,C) is an isomorphism,

(3) Ext>1
R (C,C) = 0.

Let C be a semidualizing R-module. We set

PC(R)=the subcategory of modules C ⊗R P where P is R-projective,

FC(R)=the subcategory of modules C ⊗R F where F is R-flat,

IC(R)=the subcategory of modules HomR(C, I) where I is R-injective,

FIC(R)=the subcategory of modules HomR(C,E) where E is R-FP-injective.

Modules in PC(R), FC(R), IC(R) and FIC(R) are called C-projective, C-

flat, C-injective and C-FP-injective, respectively. By setting C = R in the
definitions above we see that PR(R), FR(R), IR(R) and FIR(R) are the classes
of ordinary projective, flat, injective and FP-injective R-modules, respectively,
which we denote by P(R), F(R), I(R) and FI(R), respectively.

The following notions were introduced by Holm and Jørgensen in [14] over
commutative Noetherian rings and White in [19] for commutative rings.

Definition 0.2. A complete PPC-resolution is a complex X of R-modules
satisfying the following conditions:

(1) X is exact and HomR(−,PC(R))-exact; and
(2) Xi is projective for i > 0 and Xi is C-projective for i < 0.

An R-module M is GC-projective if there exists a complete PPC -resolution X

such that M ∼= Coker(∂X
1 ). Set

GPC(R) = the subcategory of GC -projective R-modules.

In the case C = R we use the more common terminology “complete projective
resolution” and “Gorenstein projective module” and the notation GP(R).

A complete ICI-resolution is a complex Y of R-modules such that:

(1) Y is exact and HomR(IC(R),−)-exact; and
(2) Yi is injective for i 6 0 and Yi is C-injective for i > 0.
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An R-module N is GC-injective if there exists a complete ICI-resolution Y

such that N ∼= Ker(∂Y
0 ). Set

GIC(R) = the subcategory of GC -injective R-modules.

In the case C = R we use the more common terminology “complete injective
resolution” and “Gorenstein injective module” and the notation GI(R).

Definition 0.3. An R-module M is called Ding projective if there exists a
HomR(−, F(R))-exact exact sequence of projective R-modules

· · · → P1 → P0 → P 0 → P 1 → · · ·

with M = Coker(P1 → P0). Set

DP(R) = the subcategory of Ding projective R-modules.

An R-module N is called Ding injective if there exists a HomR(FI(R),−)-
exact exact sequence of injective R-modules

· · · → I1 → I0 → I0 → I1 → · · ·

with N = Coker(I1 → I0). Set

DI(R) = the subcategory of Ding injective R-modules.

Note that every Ding projective (respectively, Ding injective) module is
Gorenstein projective (respectively, Gorenstein injective). If R is Noether-
ian, then any FP-injective module is injective by [16, Thm. 1.6], and so any
Gorenstein injective module is Ding injective. Clearly, any Gorenstein projec-
tive module over perfect ring is Ding projective. Also, it follows from [10, Cor.
4.6] that any Gorenstein projective (respectively, Gorenstein injective) module
over a Gorenstein ring is Ding projective (respectively, Ding injective).

Definition 0.4. Let X be a class of R-modules and M an R-module. An
X -resolution of M is a complex of R-modules in X of the form

X = · · · → Xn → Xn−1 → · · · → X1 → X0 → 0

such that H0(X) ∼= M and Hn(X) = 0 for n > 1, and the following exact
sequence is the augmented X -resolution of M associated to X :

X+ = · · · → Xn → Xn−1 → · · · → X1 → X0 → M → 0.

The X -projective dimension of M is the quantity

X -pdR(M) = inf{sup{n > 0 | Xn 6= 0} | X is an X -resolution of M}.

In particular, one has X -pdR(0) = −∞. The modules of X -projective dimen-
sion 0 are the nonzero modules of X . We set

X = the subcategory of R-modules with X -pdR(M) < ∞.

An X -resolution X of M is proper if the augmented resolution X+ is
HomR(X ,−)-exact.

We define (proper) X -coresolutions and X -injective dimensions dually. And
the X -injective dimension of M is denoted by X -idR(M).
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1. DC-projective modules

The Ding projective R-modules of interest in this paper are built from
semidualizing modules and their associated projective, C-projective and C-flat
classes, defined next.

Definition 1.1. A Ding PPC-resolution is a complex X of R-modules satis-
fying the following

(1) The complex X is exact and HomR(−,FC(R))-exact.
(2) The R-module Xi is projective if i > 0 and Xi is C-projective if i < 0.

An R-module M is called DC-projective if there exists a Ding PPC-resolution
X such that M ∼= Coker∂X

1 , in which case X is a Ding PPC-resolution of M .
A Ding ICI-resolution is a complex Y of R-modules such that

(1) Y is exact and HomR(FIC(R),−)-exact.
(2) The R-module Yi ∈ IC(R) for all i > 0 and Yi ∈ I(R) for all i < 0.

An R-module N is called DC-injective if there exists a Ding ICI-resolution Y

such that N ∼= Im∂Y
0 , in which case Y is a Ding ICI-resolution of N . We set

DPC(R) = the subcategory of DC-projective R-modules,

DIC(R) = the subcategory of DC-injective R-modules.

Note that when C = R, the definitions above correspond to the defini-
tions of Ding projective and Ding injective modules. By definitions, every DC -
projective (DC -injective, respectively) module is GC -projective (GC -injective,
respectively).

Remark 1.2. In the following, we only deal with DC-projective modules. But
it should be pointed out that all of the obtained results have DC -injective
counterparts by using dual arguments.

Notation 1.3. Let C be a semidualizing R-module. We use the following
abbreviations.

pdR(−) = P(R)-pd(−)

PC -pdR(−) = PC(R)-pd(−)

FC -pdR(−) = FC(R)-pd(−)

DPC -pdR(−) = DPC(R)-pd(−).

The following result which is an immediate consequence of the definition of
DC-projective modules.

Proposition 1.4. An R-module M ∈ DPC(R) if and only if Ext>1
R (M,C ⊗R

F ) = 0 and M admits a PC-coresolution X with HomR(X,C ⊗R G) exact for

any flat R-modules F and G.

By dimension shifting, one can get the following result. When C = R, which
is contained in [5, Lem. 2.4].
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Proposition 1.5. If X is a Ding PPC-resolution and L is an R-module with

finite FC-projective dimension, then the complex HomR(X,L) is exact. Con-

sequently, if M is DC-projective, then ExtiR(M,L) = 0 for all i > 0 and all

R-modules L with FC-pdR(L) < ∞.

The next three results provide ways to create DC -projective modules.

Proposition 1.6. Let P be a finitely generated projective R-module. If M ∈
DPC(R), then so is HomR(P,M).

Proof. Since M ∈ DPC(R), there exists a Ding PPC-resolution

X = · · · → P1 → P0 → C ⊗R P−1 → C ⊗R P−2 → · · ·

with M = Coker(P1 → P0). Then

HomR(P,X) = · · · → HomR(P, P0) → C ⊗R HomR(P, P−1)

→ C ⊗R HomR(P, P−2) → · · ·

is exact by [1, Prop. 20.10] and all HomR(P, Pi) ∈ P(R) (see [3, p. 14]) for all
i ∈ Z. Let F be any flat R-module. Then

HomR(HomR(P,X), C ⊗R F ) ∼= P ⊗R HomR(X,C ⊗R F )

is exact by [1, Prop. 20.11]. It follows that HomR(P,M) is DC -projective. �

Proposition 1.7. Let Q ∈ P(R). If M ∈ DPC(R), then so is M ⊗R Q. The

converse holds when Q is faithfully projective.

Proof. SinceM ∈ DPC(R), by Proposition 1.4, there exists a HomR(−,FC(R))-
exact exact sequence X = 0 → M → C ⊗R P−1 → C ⊗R P−2 → · · · , where
each Pi ∈ P(R). Then

X ⊗R Q = 0 → M ⊗R Q → C ⊗R (P−1 ⊗R Q) → C ⊗R (P−2 ⊗R Q) → · · ·

is exact with Pi ⊗R Q ∈ P(R) for all i < 0. Let F be any flat R-module. Then

HomR(X ⊗R Q,C ⊗R F ) ∼= HomR(Q,HomR(X,C ⊗R F ))

is exact by adjunction and Q ∈ P(R). It follows from [17, p. 258, 9.20] that

Ext>1
R (M ⊗R Q,C ⊗R F ) ∼= HomR(Q,Ext>1

R (M,C ⊗R F )) = 0.

So M ⊗R Q ∈ DPC(R) by Proposition 1.4 again.
If Q is faithfully projective, then the complex HomR(Q,HomR(X,C⊗R F ))

is exact if and only if the complex HomR(X,C ⊗R F ) is exact and

HomR(Q,Ext>1
R (M,C ⊗R F )) = 0 if and only if Ext>1

R (M,C ⊗R F ) = 0. �

Proposition 1.8. If P ∈ P(R), then P , C ⊗R P ∈ DPC(R). Thus, every

R-module admits a DC-projective resolution.
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Proof. By Proposition 1.7, it suffices to construct Ding PPC-resolutions of C
and R. By definition, C admits an augmented degreewise finite free resolution

X = · · · → Rα1 → Rα0 → C → 0

and this is a Ding PPC -resolution of C. Indeed, the complex X is exact by

definition and C ∼= Coker(Rα1 → Rα0). Furthermore, since Ext>1
R (C,C) = 0,

the complex HomR(X,C ⊗R F ) is exact for any flat R-module F by [19, Lem.
1.11(b)]. Thus, C is DC -projective.

Now, we show that

HomR(X,C) = 0 → R → Cα0 → Cα1 → · · ·

is a Ding PPC-resolution of R. First, left exactness of HomR(−, C) and

the equality Ext>1
R (C,C) = 0 imply HomR(X,C) is exact. Moreover, since

HomR(X,C) consists of finitely presented modules, for any flat R-module F ,
tensor evaluation provides the first isomorphism of complexes

HomR(HomR(X,C), C ⊗R F ) ∼= HomR(HomR(X,C), C) ⊗R F ∼= X ⊗R F.

The second isomorphism follows from the fact that HomR(C,C) ∼= R and [1,
Prop. 20.11]. These complexes are exact since the complex X is exact and F

is flat.
Finally, since the class DPC(R) contains the class P(R), every R-module

admits a DC-projective resolution. �

Lemma 1.9 ([13, Prop. 5.2]). Let X = 0 → W ′ → W → W ′′ → 0 be an exact

sequence of R-modules. If W ′, W ′′ ∈ PC(R), then X splits and W ∈ PC(R).

Proposition 1.10. The class DPC(R) is closed under extensions.

Proof. We consider any short exact sequence of R-modules 0 → M ′ → M →
M ′′ → 0 where M ′ and M ′′ are DC -projective with Ding PPC -resolutions P

′

and P ′′, respectively. We claim that M is also DC-projective. Use Horseshoe
lemmas in [12, (1.7)] and [17, Lem. (6.20)]), together with the fact that the
classes P(R) and PC(R) are closed under extensions by Lemma 1.9, we can
construct an exact sequence of complexes 0 → P ′ → P → P ′′ → 0 such that
M ∼= Coker(P1 → P0), where Pn = P ′

n ⊕ P ′′

n for all n ∈ Z. To show that M is
DC-projective, we only have to prove the complex HomR(P,C ⊗R F ) is exact
for all flat R-modules F . Since each 0 → P ′

n → Pn → P ′′

n → 0 is split exact by
Lemma 1.9, we have that

0 → HomR(P
′′, C ⊗R F ) → HomR(P,C ⊗R F ) → HomR(P

′, C ⊗R F ) → 0

is an exact sequence of complexes. By hypothesis, both HomR(P
′, C ⊗R F )

and HomR(P
′′, C ⊗R F ) are exact, then HomR(P,C ⊗R F ) is also exact. �

Proposition 1.11. The class DPC(R) is closed under direct sums.
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Proof. Note that if Xλ is a collection of Ding PPC-resolutions, then ⊕ΛXλ

is also a Ding PPC-resolution. In fact, for any flat R-module F there is an
isomorphism

HomR(⊕ΛXλ, C ⊗R F ) ∼=
∏

Λ

HomR(Xλ, C ⊗R F ).

Thus, if the complex HomR(Xλ, C ⊗R F ) is exact for all λ, then so is the
complex HomR(⊕ΛXλ, C ⊗R F ). �

Recall that a class of modules is called projectively resolving if it is closed
under extensions, kernels of surjections and it contains all projective modules.

Theorem 1.12. The class DPC(R) is projectively resolving and closed under

direct summands.

Proof. By Propositions 1.8 and 1.10, it suffices to show that the class DPC(R)
is closed under kernels of surjections. Consider an exact sequence of R-modules
0 → M ′ → M → M ′′ → 0 with M , M ′′ ∈ DPC(R). Let P and P ′′ be
Ding PPC-resolutions of M and M ′′, respectively. “Comparison Lemma” for
resolutions (see [12, Prop. 1.8] and [17, Prop. 6.9]) provides a morphism of
chain complexes ϕ : P → P ′′ inducing M → M ′′ on the degree 0 cokernels.

By adding complexes of the form 0 −→ P ′′

i

id
−→ P ′′

i −→ 0 for i > 0 and 0 −→

C⊗RP ′′

i

id
−→ C⊗RP ′′

i −→ 0 for i < 0 to P , one can assume ϕ is surjective. Since
both the class P(R) and PC(R) are closed under kernels of epimorphisms, see
[13, Cor. 6.4], the complex P ′ = Ker(ϕ) has the form

P ′ = · · · → P ′

1 → P ′

0 → C ⊗R P ′

−1 → C ⊗R P ′

−2 → · · ·

with P ′

i ∈ P(R) for any i ∈ Z. The exact sequence 0 → P ′ → P → P ′′ → 0 is
degreewise split by Lemma 1.9. So an argument similar to that of the previous
Proposition 1.10 implies that P ′ is a Ding PPC -resolution and M ′ is DC -
projective.

Since the class DPC(R) is projectively resolving and closed under arbitrary
direct sums by Proposition 1.11, it follows from Eilenberg’s swindle [12, 1.4]
that it is also closed under direct summands. �

Proposition 1.13. Every cokernel in a Ding PPC-resolution is DC-projective.

Proof. Consider a Ding PPC-resolution

X = · · ·
∂X

2−−→ P1

∂X

1−−→ P0

∂X

0−−→ C ⊗R P−1

∂X

−1

−−→ C ⊗R P−2

∂X

−2

−−→ · · · .

Set M = Coker∂X
1 and K = Coker∂X

2 . Since M , P0 ∈ DPC(R), the exact
sequence 0 → K → P0 → M → 0 shows that K ∈ DPC(R), see Theorem 1.12.
Inductively, one can show that Coker∂X

i ∈ DPC(R) for every i > 1.
Set N1 = M , N0 = Coker∂X

0 and Ni = Coker∂X
i for i 6 −1. Using Propo-

sition 1.4, we will be done once we verify that Ext>1
R (Ni, C ⊗R F ) = 0 for any
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flat R-module F for all i 6 0. Consider the exact sequence

Yi = 0 → Ni → C ⊗R Pi−2 → Ni−1 → 0.

By induction, one has Ext>1
R (Ni, C ⊗R F ) = 0. Proposition 1.8 implies that

C⊗RPi ∈ DPC(R) for each i 6 −1, so Ext>1
R (C⊗RPi, C⊗RF ) = 0. The long

exact sequence in HomR(−, C⊗RF ) associated to Yi provides Ext
>2
R (Ni−1, C⊗R

F ) = 0. Furthermore, since HomR(X,C ⊗R F ) is exact, so is the complex
HomR(Yi, C⊗RF ). Since Ext1R(C⊗RPi, C⊗RF ) = 0, we have Ext1R(Ni−1, C⊗R

F ) = 0 by “Five Lemma”. �

Corollary 1.14. An R-module M ∈ DPC(R) if and only if there exists an

exact sequence of R-modules 0 → M → C ⊗R P → N → 0 such that P ∈ P(R)
and N ∈ DPC(R).

Proof. Just use Proposition 1.8, Theorem 1.12 and Proposition 1.13. �

Holm proved in [12] that if 0 → M → N → L → 0 is a short exact se-
quence of R-modules with M , N ∈ GP(R), then L ∈ GP(R) if and only if
Ext1R(L, P ) = 0 for all projective R-modules P . Using the same methods,
Mahdou and Tamekkante in [15] have proved the similar result holds for Ding
projective modules. In the following, we will give a new proof to DC-projective
modules.

Corollary 1.15. Let 0 → M → N → L → 0 be a short exact sequence of R-

modules. If M , N ∈ DPC(R), then L ∈ DPC(R) if and only if Ext1R(L,C ⊗R

F ) = 0 for all flat R-modules F .

Proof. The necessity follows from Proposition 1.4. We now prove the suffi-
ciency. Let

0 −→ M
f
−→ N

g
−→ L −→ 0

be a short exact sequence of R-modules with M , N ∈ DPC(R), and Ext1R(L,
C⊗RF ) = 0 for all flat R-modules F . Then there exist HomR(−,FC(R))-exact
exact sequences of R-modules

X =: 0 → M → C ⊗R P 0 → C ⊗R P 1 → · · · ,

Y =: 0 → N → C ⊗R Q0 → C ⊗R Q1 → · · ·

with P i, Qi ∈ P(R) for i > 0. So the homomorphism f : M → N can be lifted
to a chain map α : X → Y and the mapping cone D of α : X → Y is exact by
[7, Prop. 1.4.14]. Also, the sequence D of R-modules is HomR(−,FC(R))-exact
since both X and Y are so. Consider the following commutative diagram:

W =: 0

��

// M M

��

// 0

��

// · · ·

D =: 0

��

// M

��

// N ⊕ (C ⊗R P 0)

��

// C ⊗R (Q0 ⊕ P 1) // · · ·

Z =: 0 // 0 // K // C ⊗R (Q0 ⊕ P 1) // · · · ,
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where K = Coker(M → N ⊕ (C ⊗R P 0)). Since the sequence D is
HomR(−,FC(R))-exact, breaking D into short exact ones, we have that the
sequence 0 → M → N ⊕ (C ⊗R P 0) → K is also HomR(−,FC(R))-exact.
Clearly, the sequence

0 → W → D → Z → 0

is exact. Since both W and D are exact, that Z is exact. Moreover, Z is
HomR(−, FC(R))-exact since both W and D are so.

It is straightforward to see that there exists a homomorphism h : K → L

such that the following diagram commutes:

0 // M // N ⊕ (C ⊗R P 0)

π
��

// K

h
��

// 0

0 // M
f

// N
g

// L // 0,

where π : N ⊕ (C ⊗R P 0) → N is the canonical projection. By “Five Lemma”,
we get that h is an epimorphism. By “Snake Lemma”, we have Ker(h) ∼=
Ker(π) = C ⊗R P 0. Thus the sequence of R-modules

0 −→ C ⊗R P 0 −→ K
h
−→ L −→ 0

is exact. Moreover, this short exact sequence splits by assumption that
Ext1R(L,C ⊗R P 0) = 0. Hence K ∼= L ⊕ (C ⊗R P 0). On the other hand,
one can check that ExtiR(L,C⊗RF ) = 0 for all flat R-modules F and all i > 1,

and so ExtiR(K,C ⊗R F ) ∼= Exti(L ⊕ (C ⊗R P 0), C ⊗R F ) = 0 for all flat
R-modules F and all i > 1, thus the projective resolution

K = · · · → P1 → P0 → K → 0

of K is HomR(−,FC(R))-exact. Assembling the sequences K and Z, we get
the Ding PPC-resolution of K, and so K ∼= L ⊕ (C ⊗R P 0) is DC-projective.
Then, L is DC -projective by Theorem 1.12, as desired. �

2. DC-projective dimensions of modules

In this section, we investigate some properties of DC-projective dimensions
of modules. To prove the main result, we need the following three results.

Lemma 2.1. Let 0 −→ H −→ D1
f
−→ D0 −→ M −→ 0 be an exact sequence of

R-modules with D0, D1 ∈ DPC(R). Then the following conclusions hold:
(1) We have the following exact sequences of R-modules:

(1) 0 → H → W → Q → M → 0,

and

(2) 0 → H → C ⊗R P → V → M → 0

such that P , Q ∈ P(R) and W , V ∈ DPC(R).

(2) If the exact sequence 0 −→ H −→ D1
f
−→ D0 −→ M −→ 0 is HomR(−,FC(R))-

exact, then so are (1) and (2).
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Proof. (1) Since D0 ∈ DPC(R), there is an exact sequence of R-modules 0 →
D′ → Q → D0 → 0 with Q ∈ P(R) and D′ ∈ DPC(R). Then we have the
following pullback diagram:

0

��

0

��

D′

��

D′

��

0 // A //

��

Q //

��

M // 0

0 // Imf //

��

D0
//

��

M // 0

0 0.

And consider the following pullback diagram:

0

��

0

��

H

��

H

��

0 // D′ // W //

��

D1
//

��

0

0 // D′ // A //

��

Imf //

��

0

0 0.

Both D1 and D′ are DC -projective, then so is W by Proposition 1.10. Con-
necting the middle column in the second diagram and the middle row in the
first diagram, we get the first desired exact sequence.

Dually, since D1 ∈ DPC(R), there is an exact sequence of R-modules 0 →
D1 → C ⊗R P → D′′ → 0 with P ∈ P(R) and D′′ ∈ DPC(R). Then we have
the following pushout diagram:

0

��

0

��

0 // H // D1
//

��

Imf //

��

0

0 // H // C ⊗R P //

��

B //

��

0

D′′

��

D′′

��

0 0.
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And consider the following pullback diagram:

0

��

0

��

0 // Imf //

��

D0
//

��

M // 0

0 // B //

��

V //

��

M // 0

D′′

��

D′′

��

0 0.

Since both D0 and D′′ are DC-projective, so is V by Proposition 1.10. Con-
necting the middle rows in the above two diagrams, so we get the second desired
exact sequence.

(2) Let F be any flat R-module. Note that Ext>1
R (G,C ⊗R F ) = 0 for any

DC-projectiveR-moduleG. If the exact sequence 0 −→ H −→ D1
f
−→ D0 −→ M −→

0 is HomR(−,FC(R))-exact, then Ext1R(M,C ⊗R F ) = 0 = Ext2R(M,C ⊗R F )

and Ext1R(Imf, C ⊗R F ) = 0. So in the proof of (1), both Ext1R(A,C ⊗R F ) =
0 and Ext1R(B,C ⊗R F ) = 0. Hence the exact sequences (1) and (2) are
HomR(−,FC(R))-exact. This completes the proof. �

Proposition 2.2. Let n be a positive integer and

(3) 0 −→ H −→ Dn−1 −→ Dn−2 −→ · · · −→ D1 −→ D0 −→ M −→ 0

an exact sequence of R-modules with all Di ∈ DPC(R). Then we have the

following:
(1) There exist exact sequences of R-modules

(4) 0 −→ H −→ C ⊗R Pn−1 −→ C ⊗R Pn−2 −→ · · · −→ C ⊗R P0 −→ N −→ 0

and 0 → M → N → W → 0 with all Pi ∈ P(R) and W ∈ DPC(R).
(2) There exist exact sequences of R-modules

(5) 0 −→ L −→ Qn−1 −→ Qn−2 −→ · · · −→ Q0 −→ M −→ 0

and 0 → V → L → H → 0 with all Qi ∈ P(R) and V ∈ DPC(R).
(3) If the exact sequence (3) is HomR(−,FC(R))-exact, then so are (4) and

(5).

Proof. We use an induction argument on n.
(1) If n = 1, then we have an exact sequence of R-modules 0 → H →

D0 → M → 0. Since D0 ∈ DPC(R), there is a HomR(−,FC(R))-exact exact
sequence of R-modules 0 → D0 → C ⊗R P0 → W → 0 with P0 ∈ P(R) and
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W ∈ DPC(R). Consider the following pushout diagram:

0

��

0

��

0 // H // D0
//

��

M //

��

0

0 // H // C ⊗R P0
//

��

N //

��

0

W

��

W

��

0 0.

The middle row and the rightmost column in the above diagram are the desired
two exact sequences.

Now suppose that n > 2 and we have an exact sequence of R-modules
0 → H → Dn−1 → Dn−2 → · · · → D0 → M → 0 with Di ∈ DPC(R) for
0 6 i 6 n − 1. Set K = Coker(Dn−1 → Dn−2). By Lemma 2.1, we get an
exact sequence of R-modules

(6) 0 → H → C ⊗R Pn−1 → D′

n−2 → K → 0

with Pn−1 ∈ P(R) and D′

n−2 ∈ DPC(R). Put H ′ = Im(C ⊗R Pn−1 → D′

n−2).
Then we have an exact sequence of R-modules

0 → H ′ → D′

n−2 → Dn−3 → · · · → D0 → M → 0.

So, by the induction hypothesis, we get the assertion.
(2) When n = 1, we have an exact sequence of R-modules 0 → H → D0 →

M → 0. SinceD0 ∈ DPC(R), there is a HomR(−,FC(R))-exact exact sequence
of R-modules 0 → V → Q0 → D0 → 0 with Q0 ∈ P(R) and V ∈ DPC(R),
then we have the following pullback diagram:

0

��

0

��

V

��

V

��

0 // L //

��

Q0
//

��

M // 0

0 // H //

��

D0
//

��

M // 0

0 0.

The middle row and the leftmost column in the above diagram are the desired
two exact sequences.

Now suppose that n > 2 and we have an exact sequence of R-modules
0 → H → Dn−1 → Dn−2 → · · · → D0 → M → 0 with Di ∈ DPC(R) for
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0 6 i 6 n − 1. Set K = Ker(D1 → D0). By Lemma 2.1, we get an exact
sequence of R-modules

(7) 0 → K → D′

1 → Q0 → M → 0

with Q0 ∈ P(R) and D′

1 ∈ DPC(R). Put M ′ = Im(D′

1 → Q0). Then we have
an exact sequence of R-modules

0 → H → Dn−1 → · · · → D2 → D′

1 → M ′ → 0.

So, by the induction hypothesis, we get the assertion.
(3) If the exact sequence (3) is HomR(−,FC(R))-exact, then the middle rows

in the above two commutative diagrams are also HomR(−,FC(R))-exact. On
the other hand, we can choose both (6) and (7) to be HomR(−,FC(R))-exact
by Lemma 2.1. Then we get the assertion by the induction hypothesis. �

Here is a version of Schanuel’s Lemma for DPC -resolutions.

Proposition 2.3. Let M be an R-module. Consider two exact sequences,

0 → Kn → Pn−1 → · · · → P1 → P0 → M → 0,

0 → K̃n → P̃n−1 → · · · → P̃1 → P̃0 → M → 0,

where each Pi, P̃i ∈ DPC(R). Then Kn ∈ DPC(R) if and only if K̃n ∈
DPC(R).

Proof. Since the class DPC(R) is projectively resolving and closed under ar-
bitrary sums, direct summands by Theorem 1.12, the stated result is a direct
consequence of [2, Lem. 3.12]. �

The main result of this section gives both functorial descriptions of the
DC-projective dimensions of modules and some criterions for computing the
DC-projective dimensions of modules.

Theorem 2.4. Let M be an R-module with finite DC-projective dimension

and let n be an integer. Then the following conditions are equivalent:

(1) DPC-pdR(M) 6 n.

(2) ExtiR(M,L) = 0 for all i > n and all R-modules L with FC-pdR(L) <
∞.

(3) ExtiR(M,C ⊗R F ) = 0 for all i > n and all flat R-modules F .

(4) There is an exact sequence 0 → Kn → Dn−1 → · · · → D0 → M → 0
such that Di ∈ DPC(R) for 0 6 i 6 n− 1 and Kn ∈ DPC(R).

(5) For every non-negative integer t such that 0 6 t 6 n, there is an

exact sequence of R-modules 0 → Qn → Qn−1 → · · · → Qt+1 →
D → Qt−1 → · · · → Q0 → M → 0 such that D ∈ DPC(R) and

Qi ∈ P(R) ∪ PC(R) for 0 6 i 6 n, i 6= t.

Consequently, the DPC-projective dimension of M is determined by the formu-

las:

DPC-pdR(M) = sup{ i ∈ N0 | ∃ L ∈ FC(R) : ExtiR(M,L) 6= 0}
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= sup{ i ∈ N0 | ∃ Q ∈ FC(R) : ExtiR(M,Q) 6= 0}.

Proof. Note that the equivalence of (1) and (4) is simply obtained by Proposi-
tion 2.3 and by the definition of the DPC -projective dimension. Then it remain
to prove the equivalences of (1) ⇔ (2) ⇔ (3) ⇔ (5).

(1) ⇒ (2). We assume that DPC -pdR(M) 6 n. By definition there is
an exact sequence 0 → Dn → · · · → D0 → M → 0 with Di ∈ DPC(R) for
0 6 i 6 n. By dimension shifting and Proposition 1.4, for any R-module L with
finite FC-projective dimension, we have ExtiR(M,L) ∼= Exti−n

R (Dn, L) = 0 for
all i > n.

(2) ⇒ (3) and (5) ⇒ (1) are obvious.
(3) ⇒ (1). Since DPC-pdR(M) < ∞ and by Proposition 2.3, we may pick,

for some positive integer m > n, an exact sequence

0 → Dm → Dm−1 → · · · → D0 → M → 0,

where Di ∈ DPC(R) for 0 6 i 6 m. Set Kn = Ker(Dn−1 → Dn−2). Our aim
to prove that Kn ∈ DPC(R). We decompose the sequence 0 → Dm → · · · →
Dn → Kn → 0 into short exact sequences 0 → Hi+1 → Di → Hi → 0 for
i = n, . . . ,m − 1, where Hn = Kn and Hm = Dm. Consider the short exact
sequence

0 → Hm(= Dm) → Dm−1 → Hm−1 → 0.

We claim that Hm−1 ∈ DPC(R). By the exact sequence 0 → Hm−1 →
Dm−2 → · · · → D0 → M → 0, using assumption and dimension shifting,
we have ExtiR(Hm−1, C ⊗R F ) ∼= Exti+m−1

R (M,C ⊗R F ) = 0 for every integer
i > 0 and every flat R-module F . Thus, by Corollary 1.15, Hm−1 ∈ DPC(R).
Now we repeat successively this last argument to conclude that Hm−2, . . .,
Hn = Kn are DC-projective.

(1) ⇒ (5) We proceed by induction on n. Suppose that DPC -pdR(M) 6 1.
Then there exists an exact sequence of R-modules 0 → D1 → D0 → M → 0
withD0, D1 ∈ DPC(R). By Lemma 2.1 withH = 0, we get the exact sequences
of R-modules 0 → C ⊗R P1 → D′

0 → M → 0 and 0 → D′

1 → P0 → M → 0
with P0, P1 ∈ P(R) and D′

0, D
′

1 ∈ DPC(R).
Now suppose n > 2. Then there exists an exact sequence of R-modules

0 → Dn → Dn−1 → · · · → D0 → M → 0 where Di ∈ DPC(R) for 0 6 i 6 n.
Set H = Coker(D3 → D2). By applying Lemma 2.1 to the exact sequence
0 → H → D1 → D0 → M → 0, we have an exact sequence 0 → Dn →
· · · → D2 → D′

1 → P0 → M → 0 with D′

1 ∈ DPC(R) and P0 ∈ P(R). Put
N = Coker(D2 → D′

1). Then we have DPC -pdR(N) 6 n−1. By the induction
hypothesis, there exists an exact sequence of R-modules 0 → Qn → · · · →
Qt+1 → Dt → Qt−1 → · · · → Q1 → P0 → M → 0 such that P0 ∈ P(R),
Dt ∈ DPC(R) and Qi ∈ P(R) ∪ PC(R) for i 6= t and 1 6 t 6 n.

Now we need only to prove (5) for t = 0. Set B = Coker(D2 → D1). By
the induction hypothesis, we have an exact sequence 0 → Qn → · · · → Q2 →
D′

1 → B → 0 with Qi ∈ P(R) ∪ PC(R) and D′

1 ∈ DPC(R) for 2 6 i 6 n. Set
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G = Coker(Q3 → Q2). Then by applying Lemma 2.1 to the exact sequence
0 → G → D′

1 → D0 → M → 0, we have an exact sequence 0 → G →
C⊗RP1 → D′

0 → M → 0 with P1 ∈ P(R) and D′

0 ∈ DPC(R). Thus we obtain
the desired exact sequence 0 → Qn → · · · → Q2 → Q1 → D′

0 → M → 0 with
Qi ∈ P(R) ∪ PC(R) and D′

0 ∈ DPC(R).
The last formulas in the theorem for determination of DPC-pdR(M) are a

direct consequence of the equivalence between (1)-(3). �

The next result shows that the class of R-modules of finite DPC -projective
dimension satisfies the two-of-three property.

Proposition 2.5. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of

R-modules. If two of DPC-pdR(M
′), DPC-pdR(M) and DPC-pdR(M

′′) are

finite, so is the third.

Proof. Let P ′ and P ′′ be projective resolutions of M ′ and M ′′, respectively.
For each n > 0, the horseshoe lemma yields a commutative diagram:

0

��

0

��

0

��

0 // M ′

n
//

��

Mn
//

��

M ′′

n
//

��

0

0 // P ′

n−1
//

��

P ′

n−1 ⊕ P ′′

n−1
//

��

P ′′

n−1
//

��

0

...

��

...

��

...

��

0 // P ′

0
//

��

P ′

0 ⊕ P ′′

0
//

��

P ′′

0
//

��

0

0 // M ′ //

��

M //

��

M ′′ //

��

0

0 0 0.

Assume that DPC -pdR(M), DPC -pdR(M
′′) 6 n. Then Theorem 2.4 im-

plies that Mn, M
′′

n ∈ DPC(R). From the top row of the diagram, we con-
clude that M ′

n ∈ DPC(R) by Theorem 1.12. Hence, the first column of
the diagram is a bounded augmented DPC(R)-resolution of M ′, so we have
DPC -pdR(M

′) 6 n.
A similar argument shows that, if DPC -pdR(M

′), DPC -pdR(M
′′) 6 n, then

DPC -pdR(M) 6 n.
Assume that DPC-pdR(M

′), DPC -pdR(M) 6 n. Again, it follows that
M ′

n, Mn ∈ DPC(R). Thus, the top row of the diagram shows that DPC -pdR
(M ′′

n ) 6 1. Furthermore, by combing the top row and the rightmost column of
this diagram, we obtain an exact sequence

0 → M ′

n → Mn → P ′′

n−1 → · · · → M ′′ → 0.
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This is an augmented DPC(R)-resolution of M ′′ of length n+1, so we conclude
that DPC -pdR(M

′′) 6 n+ 1. �

When C = R, it was proved in [5, Lem. 2.4(2)] that if M is a Ding pro-
jective R-module of finite flat dimension, then M is projective. Naturally, it
makes sense to give the relation between PC-projective dimensions and DPC -
projective dimensions.

Proposition 2.6. If M is an R-module of finite FC-projective dimension, then

DPC-pdR(M) = PC-pdR(M).

In particular, there is an equality of classes DPC

⋂
FC(R) = PC(R).

Proof. Using Theorem 2.4, it suffices to show that if M is DC -projective with
FC-pdR(M) < ∞, then M is C-projective. To this end, consider an exact
sequence of the form

0 → K → C ⊗R P → M → 0,

where P ∈ P(R) and FC-pdR(K) < ∞. By Theorem 2.4, Ext>1
R (M,K) = 0,

so the above sequence splits, forcing M to be a summand of C ⊗R P . Since
the class PC(R) is closed under summands by [13, Prop. 5.5], M ∈ PC(R), as
desired. �

We complete this article with the following application of Lemma 2.1. We
denote DP2

C(R) the class of R-modules M for which there exists an exact
sequence of DC-projective R-modules

X = · · ·
∂X

2−−→ X1

∂X

1−−→ X0

∂X

0−−→ X−1

∂X

−1

−−→ · · ·

such that the complex HomR(X,F ) is exact for each flat R-module F and
M ∼= Coker∂X

1 .
The following result shows that an iteration of the procedure used to define

the DC-projective R-modules yields exactly the DC-projective R-modules.

Theorem 2.7. DP2
C(R) = DPC(R).

Proof. One checks readily that there is a containment DPC(R) ⊆ DP2
C(R).

Now, we prove the converse containment.
LetM ∈ DP2

C(R). By definition we have an exact sequence ofDC-projective
R-modules

X = · · ·
∂X

2−−→ X1

∂X

1−−→ X0

∂X

0−−→ X−1

∂X

−1

−−→ · · ·

such that the complex HomR(X,C ⊗R F ) is exact for each flat R-module F

and M ∼= Coker∂X
1 . So ExtiR(M,C ⊗R F ) = 0 for any flat R-module F and

any i > 1.
Set Mi = Coker∂X

i+1 for any i ∈ Z. By Lemma 2.1(1), there exists exact
sequences of R-modules

0 → M → C ⊗R P−1 → N−1 → 0,
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and

0 → M−1 → N−1 → D → 0

such that P−1∈P(R) andD∈DPC(R) with the former one is HomR(−,FC(R))-
exact. Consider the following pushout diagram:

0

��

0

��

0 // M−1
//

��

N−1
//

��

D // 0

0 // X−2
//

��

D′ //

��

D // 0

M−2

��

M−2

��

0 0.

Since X−2, D ∈ DPC(R), the middle row with Theorem 1.12 yields D′ ∈
DPC(R). Note that the leftmost column is HomR(−,FC(R))-exact, then
Ext1R(M−2, C ⊗R F ) = 0 for any flat R-module F . Hence, the middle col-
umn is also HomR(−,FC(R))-exact, and so we have a HomR(−,FC(R))-exact
exact sequence of R-modules

0 → N−1 → D′ → X−3 → X−4 → · · · .

Then by the same argument, we obtain HomR(−,FC(R))-exact exact sequences
of R-modules

0 → N−1 → C ⊗R P−2 → N−2 → 0,

and

0 → N−2 → D′′ → X−4 → X−5 → · · · .

By iterating the above argument, we have a HomR(−,FC(R))-exact exact se-
quence of R-modules

0 → M → C ⊗R P−1 → C ⊗R P−2 → · · · ,

in which each Pi ∈ P(R). So M ∈ DPC(R) by Proposition 1.4, and the desired
conclusion DP2

C(R) ⊆ DPC(R) is obtained. �
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