DOI QR코드

DOI QR Code

Study on Roughage Degradation and Adhesion of Rumen Fibrolytic Bacteria by Real-Time PCR

Real-Time PCR 기법을 이용한 반추위 섬유소분해 박테리아의 부착과 조사료 분해에 관한 연구

  • Sung, Ha Guyn (Dept. of Animal Science & Technology, Sangji University)
  • 성하균 (상지대학교 동물자원과학과)
  • Received : 2014.03.06
  • Accepted : 2014.03.17
  • Published : 2014.03.31

Abstract

The comparisons between cellulolytic bacteria adhesion on rice straw and fiber digestion in time course during rumen fermentation were studied in situ. The adhesions of cellulolytic bacteria, F. succinogenes. R. albus and R. flavefaciens, were measured by RT-PCR. When the rice straws were incubated at 0. 2, 4, 8, 12 and 24 hours of the in situ rumen, straw was degraded with increasing speed during the incubation and showed the highest disappearance increasing rate (DM g/h) from 8 to 12 hour. The adhesions of F. succinogenes, R. flavefaciens and R. albus were achieved above 80% in 1 hour of in situ rumen fermentation and then keep adhesive population up after the time of fermentation. When the in situ samples were collected at 0, 5, 10, 30 and 60 min to detect the early stages of adhesion on the rice straws ingested into rumen, the numberous adhesive colony of F. succinogenes, R. flavefaciens and R. albus were detected in 5 min. In case of rice straw treated with 0, 2, 4 and 8% NaOH, all of three cellulolytic bacteria showed the increasing trends of adhesion with increasing DM disappearance of rice straw by higher concentration of NaOH at 12 hour of in situ. However, there were showed respectively difference at 24 hour. The present results gave certain evidence that adhesion of cellulolytic bacteria is definitely achieved in early stage of roughage ingestion into rumen, their colony develop the stable communities on roughage in process of rumen fermentation and then fiber degradation is accelerated.

본 연구는 조사료의 반추위 발효가 진행됨에 따른 볏짚표면에 부착된 섬유소 분해 박테리아의 군집변화와 섬유소 소화율을 비교 관측하기 위하여 볏짚의 in situ 반추 발효를 실시하였다. 그리고 부착 박테리아의 군집 변화를 측정하기 위하여 RT-PCR 기법을 이용하여 F. succinogenes. R. albus와 R. flavefaciens의 군집을 모니터링 하였다. 본 연구를 수행하기 위하여 in situ 볏짚 발효를 0. 2, 4, 8, 12, 24시간 실시하였을 때 반추위내 볏짚의 in situ 분해는 발효 시간이 진행됨에 따라 가속화되어 발효 8~12시간 사이에 최고 분해 속도를 나타내었으나, F. succinogenes, R. flavefaciens과 R. albus는 모두 발효 0~1시간 사이에 볏짚 표면에 부착이 80% 이상 완료되어 이후 발효가 계속 진행되는 동안 일정 수준의 군락을 유지하는 것이 발견되었다. 그리고 반추위내 유입된 조사료의 표면에 초기 부착과정을 관찰하기 위하여 0, 5, 10, 30 및 60분 간격으로 볏짚의 in situ 샘플을 채취하여 조사하였을 때 F. succinogenes, R. flavefaciens 및 R. albus의 군락 모두 볏짚이 반추위 유입 후 5분 내에 상당량의 수가 부착함을 발견하였다. 또한 조사료의 반추위 발효 용이성에 따른 섬유소 분해 박테리아의 부착 정도를 관찰하기 위하여 0, 2, 4 및 8% NaOH를 처리한 볏짚을 12 및 24시간 in situ 배양 볏짚의 소화율과 부착 박테리아의 군집 변화를 관측하였을 때, 볏짚의 NaOH 처리 농도가 높아짐에 따라 in situ 소화율이 증가하였으며, 동시에 부착된 박테리아 군집의 증가 경향이 F. succinogenes, R. flavefaciens 및 R. albus의 3균주 모두 배양 12시간에 나타났으나 배양 24시간에서는 각기 다른 양상을 나타냈다. 따라서 본 연구결과는 반추위내 섬유소 발효과정에서 섬유소 분해 박테리아의 부착은 조사료의 반추위 유입 초기에 반드시 이루어지고, 발효 시간이 진행됨에 따라 조사료 표면에 안정된 군락을 형성하며, 섬유소 분해가 가속화된다는 사실을 보여 주었다.

Keywords

References

  1. Bae, H.D., McAllister, T.A., Kokko, E.G., Leggett, F.L., Yanke, L.J., Jakober, K.D., Ha, J.K., Shin, H.T. and Cheng, K.J. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:165-181. https://doi.org/10.1016/S0377-8401(96)01093-0
  2. Cheng, K.J. and Costerton, J.W. 1980. Adhesive bacteria-Their role in digestion of plant material, urea and ephithelial cells. Pages 225-250 in digestive Physiology and Metabolism in Ruminants. Y. Ruchebusch and P. Thivend, Eds, MTP press Ltd., Lancaster, England.
  3. Cheng, K.J., Forsberg, C.W., Minato, H. and Costerton, J.W. 1991. Microbial ecology and physiology of feed degradation within the rumen. In Physiological Aspects of Digestion and Metabolism in Ruminants, ed. T. Tsuda, Y. Sasaki and R. Kawashima. Academic Press. Toronto, pp. 595-624.
  4. Craig, W.M., Broderick, G.A. and Ricker, D.B. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117:56-64. https://doi.org/10.1093/jn/117.1.56
  5. Dehority, B.A., Tirabasso, P.A. and Grifo, A.P.Jr. 1989. Mostprobable- number procedures for enumerating ruminal bacteria, including in the simultaneous estimation of total and cellulolytic numbers in one medium. Appl. Environ. Microbiol. 55:2789-2792.
  6. Dinsdale, D., Morris, E.J. and Bacon, J.S.D. 1978. Electron microscopy of the microbial populations present and their modes of attach on various cellulosic substrates undergoing digestion in the sheep rumen. Appl. Environ. Microbiol. 36:160-168.
  7. Flint, H.J. and Forsberg, C.W. 1995. Polysaccharide degradation in the rumen: biochemistry and genetics. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. ed. W.V. Engelhardt, S. Leonhard-Mar, G. Breves and D. Giesecke. Ferdinand Enke Verlag, Stuttgart, pp. 43-70.
  8. Forsberg, D.W., Cheng, K.J. and White, B.A. 1997. Polysaccharide degradation in the rumen and large intestine. In Gastrointestinal Microbiology, R.I. Mackie aqnd B.A. White(Eds), Chapman and Hall, New york, U.S.A, p319-379.
  9. Gong, J. and Forsberg, C.W. 1989. Factors affecting adhesion of Fibrobacter succinogenes S85 and adherence defective mutants to cellulose. Appl. Environ. Microbiol. 55: 3039-3044.
  10. Hungate, R.E. 1966. The Rumen and Its Microbes. Academic Press. New York, N. Y.
  11. Hwang, I.H., Lee, C.H. Kim, S.W., Sung, H.G., Lee, S.Y., Lee, S.S., Hong, H., Kwan, Y.C. and Ha, J.K. 2008. Effects of mixtures of Tween80 and cellulolytic enzymes on nutrient digestion and cellulolytic bacterial adhesion. Asian-Aust. J. Anim. Sci. 21:1604-1609. https://doi.org/10.5713/ajas.2008.80333
  12. Khejornsartand, P. and Wanapat, M. 2010. Effect of Chemical Treatment of Rice Straw on Rumen Fermentation Characteristic, Anaerobic Fungal Diversity in vitro. J. of Animal and Veterinary Advances. 9:3070-3076. https://doi.org/10.3923/javaa.2010.3070.3076
  13. Koike, S. and Kobayashi, Y. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  14. Koike, S., Pan, J., Kobayashi, Y. and Tanaka, K. 2003. Kinestics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429-1435. https://doi.org/10.3168/jds.S0022-0302(03)73726-6
  15. Krause, D.O. and Russell, J.B. 1996. How many ruminal bacteria are there? J. Dairy Sci. 79:1467-1475. https://doi.org/10.3168/jds.S0022-0302(96)76506-2
  16. McAllister, T.A., Bae, H.D., Jones, G.A. and Cheng, K.J. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018. https://doi.org/10.2527/1994.72113004x
  17. Mehrez, A.A. and Orskov, E.I. 1977. A study of the artificial bac technique for determining the digestibility of feeds in the rumen. J. Agr. Sci. 88:645-652. https://doi.org/10.1017/S0021859600037321
  18. Merry, R.J. and McAllan, A.B. 1983. A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. Br. J. Nutr. 50:70.
  19. Michalet-Doreau, B., Fernandez, I., Peyron, C., Millet, L. and Fonty, G. 2001. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod. Nutr. Dev. 41:187-194. https://doi.org/10.1051/rnd:2001122
  20. Minato, H, and Suto, T. 1979. Technique for fractionation of bacteria in rumen microbial ecosystem. III. Attachment of bacteria isolated from bovine rumen to starch granules in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbial., 25,71-93. https://doi.org/10.2323/jgam.25.71
  21. Minato, H., Mitsumori, M. and Cheng, K.J. 1993. Attachment of microorganisms to solid substrates in the rumen. Pages 139-145 in Proc. MIE bioforum on Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Institut Pasteur, Paris, France.
  22. Miron, J., Ben-Ghedalia, D. and Morrison, M. 2001. Invited Review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2
  23. Miron, J., Ben-Ghedalia, D. and Morrisont, M. 2001. Adhesion mechanism of rumen cellulolytic bacteria. J. dairy Sci. 84:1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2
  24. Ogimoto, K. and Imai, S. 1981. Atlas of Rumen Microbiology, Japan Scientific Societies Press, Tokyo.
  25. Pell, A.N. and Schofield, P. 1993. Microbial adhesion and degradation of plant cell walls Pages 397-423 in Forage Cell Wall Structure and Digestibility. R. D. Hatfield, H. G. Jung, J. Ralph, D. R. Buxton, D. R. Mertens, and P. J. Weimer, eds ASA-CSSA-SSSA, Madison, WI.
  26. Purdy, K.J., Embley, T.M., Takii, S. and Nedwell, D.B. 1996. Rapid extraction of DNA and RNA from sediments by novel hydroxyapatite spin-colum method. Appl. Environ. Microbial. 62:3905-3970.
  27. Reilly, K,, Carruthers, V.R. and Attwood, G.T. 2002. Design and use of 16S ribosomal DNA-directed primers in competitive PCRs to enumerate proteolytic bacteria in the rumen. 43:259-270. https://doi.org/10.1007/s00248-001-1052-2
  28. Reilly, K. and Attwood, G.T. 1998. Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl. Environ. Microbiol. 64:907-913.
  29. Roger, V., Fonty, G., Komisarczuk-Bony, S. and Gouet, P. 1990. Effects of physicochemical factors on the adhesion to cellulose avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081.
  30. Russell, J.B. and Rychlik, J.L. 2001. Factors that alter rumen microbial ecology. Science. 292:1119-1122. https://doi.org/10.1126/science.1058830
  31. Stahl, D.A., Flesher, B., Mansfield, H.R. and Montgomery, L. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079-1084.
  32. Sung, H.G. 2013. The Effects of Yeast Culture Utilization on Rice Straw Digestibility and Cellulolytic Bacterial Function in Ruminant. J. Animal Science and Technology. 55:41-49. https://doi.org/10.5187/JAST.2013.55.1.41
  33. Sung, H.G., Kobayashi, Y., Chang, J., Ha, A., Hwang, I.H. and Ha, J.K. 2007. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Aust. J. Anim. Sci. 20:200-207.
  34. Tajima, K., Aminov, R. I., Nagamine, T., Matsui, H., Nakamura, M. and Benno, Y. 2001. Diet-Dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microb. 2766-2744.
  35. Williams, A.G. and Strachan, N.H. 1984. Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta. Can. J. Anim. Sci. 64:58-59. https://doi.org/10.4141/cjas84-156
  36. Woese, C.R. 1994. There must be a prokaryote somewhere: microbiology's search for itself. Microbiol Rev. 58:1-9.