DOI QR코드

DOI QR Code

The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate

잔골재의 투입시점에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축에 대한 기초적 연구

  • Received : 2013.11.01
  • Accepted : 2014.01.02
  • Published : 2014.03.30

Abstract

This paper examines the fundamental properties of alkali-activated slag cement (AASC) activated by sodium hydroxide (NaOH). The water to binder (W/B) ratio was 0.4 and 0.5. And concentration of activator were 2M and 4M. Five mix design of each W/B ratios was considered. The N0 mixture was KS L 5109 method and N1~N4 were varied in different mixing time, mix step and entering points of fine aggregate. Test results clearly showed that the flow value, strength and drying shrinkage development of AASC were significantly dependent on the entering point of fine aggregate. The flow value tended to decreases with delaying entering point of fine aggregate. The compressive strength and flexural strength increases with delaying entering point. Moreover, the XRD analysis confirmed that there were sustain these results. The drying shrinkage increases with delaying entering point of fine aggregate. Futhermore, a modified mixing method incorporating all hereby experimentally derived parameters, is proposed to improvement the physical properties of AASC.

본 연구는 수산화나트륨(NaOH)으로 활성화된 알칼리 활성화 슬래그 시멘트(alkali-activated slag cement; AASC)의 기초 특성에 관한 실험에 관한 연구이다. 물-결합재 비(W/B)를 0.4와 0.5로 하였다. 그리고 활성화제의 농도를 2M과 4M을 사용하였다. 각 W/B 비에 대해 5가지의 배합을 고려하였다. N0는 KS L 5109의 방법이고 N1~N4는 배합시간, 배합 단계 그리고 잔골재의 투입시점을 다르게 변화시켰다. 시험결과 AASC의 플로우 값, 강도 그리고 건조수축은 잔골재의 투입시점에 영향을 받았다. 플로우 값은 잔골재의 투입시점이 늦춰짐에 따라 감소하는 경향을 나타내었다. 압축강도와 휨강도는 투입시점이 늦어짐에 따라 증가하였다. 더구나 XRD 분석은 이러한 결과들을 뒷받침하고 있었다. 건조수축은 잔골재의 투입시점이 늦어지면 증가하였다. 본 연구에 고려된 실험요인들을 통해 배합을 조절한다면 AASC의 특성을 향상시킬 수 있을 것이다.

Keywords

References

  1. Bakharev, T., Sanjayan, J. G., Cheng, Y. B. (1999), Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cement and Concrete Research, 29, 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
  2. Bernal, S. A., Mejia de Gutierrez, R., Pedeaza, A. L., Provis, J. L., Rodriguez, E. D., Delvasto, S. (2011), Effect of binder content on the performance of alkali-activated slag concretes, Cement and Concrete Research, 41, 1-8. https://doi.org/10.1016/j.cemconres.2010.08.017
  3. Escalante-Garcia, J. I., Fuentes, A. F., Gorokhovsky, A., Fraire-Luna, P. E., Mendoza-Suarez, G. (2003), Hydration Production and Reactivity of Blast-Furnace Slag Activated by Various Alkalis, Journal of American Ceramic Society, 86(12), 2148-2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x
  4. Fernandez-Jimenez, A., Puertas, F. (2003), Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator, Journal of American Ceramic Society, 86(8), 1389-1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x
  5. Kim, T. W., Hahm, H. G., Lee, S. H., Eom, J. S. (2013), The Fundamental Properties of Alkali-Activated Slag Cement (AASC) Mortar with Different Water-Binder Ratios and Fine Aggregate-Binder Ratios, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(5), 77-86 (in Korean). https://doi.org/10.11112/jksmi.2013.17.5.077
  6. Kim, T. W., Park, H. J., Seo, K. Y. (2012), influence of blended activators on the physical properties of Alkali-activated slag mortar, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(6), 26-33 (in Korean). https://doi.org/10.11112/jksmi.2012.16.6.026
  7. Li, C., Sun, H., Li, L. (2010), A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements, Cement and Concrete Research, 40, 1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020
  8. Moon, H. Y., Shin, D. G. (2005), Effect of Alkali Activators on Early Compressive Strength of Blast-Furnace Slag Mortar, Journal of the Korea Institute for Structural Maintenance and Inspection, 9(3), 120-128 (in Korean).
  9. Pacheco-Torgal, E., Abdollahnejad, Z., Camoes, A. F., Jamshidid, M., Ding, Y. (2012), Durability of alkali-activated binders, A clear advantage over Portland cement or an unproven issue?, Construction and Building Materials, 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
  10. Ravikumar, D., Neithalath, N. (2012), Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH, Cement & Concrete Composites, 34, 809-818. https://doi.org/10.1016/j.cemconcomp.2012.03.006
  11. Saout, G. L., Haha, M. B., Winnefeld, F., Lothenbach, B. (2011), Hydration Degree of Alkali-Activated Slags: A $^{29}Si$ NMR Study, Journal of American Ceramic Society, 94(12), 4541-4547. https://doi.org/10.1111/j.1551-2916.2011.04828.x
  12. Song, K. I., Lee, S. H., Hong, G. H., Gong, M. H., Song, J. K. (2012), Effects of Basicity on the Carbonation Characteristics of Alkali-Activated Slag Mortar, Journal of the Korea Concrete Institute, 24(5), 577-584 (in Korean). https://doi.org/10.4334/JKCI.2012.24.5.577
  13. Vladimir Zivica (2007), Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures, Construction and Building Materials, 21, 1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002
  14. Yang, K. H., Song, J. G. (2007), The Properties and Applications of Alkali-Activated Concrete with No Cement, Magazine of the Korea Concrete Institute, 19(2), 42-28 (in Korean).
  15. Yang, K. H., Song, J. K., Lee, K. H. (2011), A Stress-Strain Relationship of Alkali-Activated Slag Concrete, Journal of the Korea Concrete Institute, 23(6), 765-772 (in Korean). https://doi.org/10.4334/JKCI.2011.23.6.765