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THE POSITIVITY OF THE HYPERGEOMETRIC

TRANSLATION OPERATORS ASSOCIATED TO THE

CHEREDNIK OPERATORS AND THE

HECKMAN-OPDAM THEORY ATTACHED TO THE

ROOT SYSTEMS OF TYPE B2 AND C2

Khalifa Trimèche

Abstract. We consider the hypergeometric translation operator
associated to the Cherednik operators and the Heckman-Opdam the-
ory attached to the root system of type B2. We prove in this paper
that these operators are positivity preserving and allow positive in-
tegral representations. In particular we deduce that the product
formulas of the Opdam-Cherednik and the Heckman-Opdam ker-
nels are positive integral transforms, and we obtain best estimates
of these kernels.

The method used to obtain the previous results shows that these
results are also true in the case of the root system of type C2.

1. Introduction

In [1], Cherednik introduced a family of differential-difference opera-
tors that nowadays bear his name. These operators play a crucial role in
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the theory of Heckman-Opdam’s hypergeometric functions, which gener-
alize the theory of Harish-Chandra’s spherical functions on Riemannian
symmetric spaces (see [2,3,5]).

To study in [7,8] a harmonic analysis associated with the Chered-
nik operators and the Heckman-Opdam theory, the author has intro-
duced the hypergeometric translation operators. In many situations to
solve problems of this harmonic analysis we need the positivity of these
operators, and the product formulas of the Opdam-Cherednik and the
Heckman-Opdam kernels are given by integrals with positive measures.
These properties are not yet proved in the general case, they are obtained
only in the one dimensional case (see [9]), and in the multidimensional
case under some conditions on the root system and the multiplicity func-
tion (see [10]).

This paper is a contribution towards these questions in the case of
the Cherednik operators and the Heckman-Opdam theory attached to
the root system of type B2.

We prove in this paper the positivity of the hypergeometric transla-
tion operators Tx, T Wx , x ∈ R2, associated respectively to the Cherednik
operators and the Heckman-Opdam theory, and we deduce that for all
x, u ∈ R2, there exist positive measures mx,u,m

W
x,u on R2 with compact

support and of norm equal to 1, such that
- For all C∞-function g on R2 we have

Tx(g)(u) =

∫
R2

g(z)dmx,u(z). (1)

- For all C∞-function g on R2 invariant by the Weyl group W , we
have

T Wx (g)(u) =

∫
R2

g(z)dmW
x,u(z). (2)

From the relations (1), (2) we deduce the following product formulas for
the Opdam-Cherednik kernel Gλ(x), λ ∈ C2, and the Heckman-Opdam
kernel Fλ(x), λ ∈ C2 :

∀ x, u ∈ R2, Gλ(x)Gλ(u) =

∫
R2

Gλ(z)dmx,u(z), (3)

∀ x, u ∈ R2, Fλ(x)Fλ(u) =

∫
R2

Fλ(z)dmW
x,u(z). (4)
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These formulas imply the following estimates for the functions Gλ(x)
and Fλ(x) :

∀ x,∈ R2, ∀ λ ∈ R2, |Gλ(x)| ≤ 1, (5)

∀ x,∈ R2,∀ λ ∈ R2, |Fλ(x)| ≤ 1. (6)

Our proof of the positivity of the hypergeometric translation operator
Tx, x ∈ R2, uses essentially the properties of the heat kernel pt(x, y), t >
0, associated with the Cherednik operators and the positivity of the
transmutation operators associated with the Cherednik operators proved
in [11]. We deduce the positivity of the hypergeometric translation op-
erator T Wx , x ∈ R2, from the previous result and the relation between
Tx and T Wx .

We remark that the method employed in this paper can be applied
to the Jacobi-Cherednik operator on R, and to the Cherednik operators
and the Heckman-Opdam theory attached to the root system of type
C2.

2. The Cherednik operators on R2 and their eigenfunctions

We consider R2 with the standard basis {e1, e2} and inner product
〈., .〉 for which this basis is orthonormal. We extend this inner product
to a complex bilinear form on C2.

2.1. The root system of type B2 and the multiplicity function.
The root system of type B2 can be identified with the set R given by

R = {±e1,±e2} ∪ {±e1 ± e2}, (2.1)

which can also be written in the form

R = {±α1,±α2,±α3 ± α4},
with

α1 = e1, α2 = e2, α3 = (e1 − e2), α4 = (e1 + e2). (2.2)

We denote by R+ the set of positive roots

R+ = {α1, α2, α3, α4}, (2.3)

and by Ro
+ the set of positive indivisible roots i.e, the roots α ∈ R+ such

that α
2
/∈ R+. Then we have

R0
+ = R+. (2.4)
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For α ∈ R, we consider

rα(x) = x− 〈ᾰ, x〉α, with ᾰ =
2α

‖α‖2
, (2.5)

the reflection in the hyperplan Hα ⊂ R2 orthogonal to α. The reflections
rα, α ∈ R, generate a finite group W ⊂ O(2), called the Weyl group
associated with R. In this case W is isomorphic to the hyperoctahedral
group which is generated by permutations and sign changes of the ei, i =
1, 2,.

The multiplicity function k : R →]0,+∞[ can be written in the form
k = (k1, k2) where k1 is the value on the roots α1, α2, and k2 is the value
on the roots α3, α4.

The positive Weyl chamber denoted by a+ is given by

a+ = {x ∈ R2 ;∀ α ∈ R+, 〈α, x〉 > 0}, (2.6)

it can also be written in the form

a+ = {(x1, x2) ∈ R2 ;x1 > x2 > 0}, (2.7)

we denote by a+ its closure. Let also R2
reg be the subset of regular

elements in R2, i.e., those elements which belong to no hyperplane Hα =
{x ∈ R2; 〈α, x〉 = 0}, α ∈ R.

Let Ak denote the weight function

∀ x ∈ R2,Ak(x) =
∏
α∈R+

| sinh〈α
2
, x〉|2k(α). (2.8)

Remark 2.1. The root system of type C2 can be identified with the
set R given by

R = {±2e1,±2e2} ∪ {±e1 ± e2},
which can also be written in the form

R = {±α1,±α2,±α3,±α4},
with

α1 = 2e1, α2 = 2e2, α3 = (e1 − e2), α4 = (e1 + e2).

The set of positive roots is the following

R+ = {α1, α2, α3, α4}.
If we denote by W (C2) the Weyl group associated to the root system R
of type C2, then we have

W (C2) = W (B2).
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We denote also by k = (k1, k2) the multiplicity function of the root
system R of C2, where k1 is the value on the roots α1, α2, and k2 is the
value on the roots α3, α4.

In the remainder of the paper we shall give the results and their proofs
only for the root system of type B2. It is easy to obtain the analogous
of these results in the case of the root system of type C2.

2.2. The Cherednik operators on R2. The Cherednik operators
Tj, j = 1, 2, on R2 associated with the Weyl groupW and the multiplicity

function k are defined for f of class C1 on R2 and x ∈ Rreg = R2\
⋃
α∈R

Hα

by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} − ρjf(x), (2.9)

with

ρj =
1

2

∑
α∈R+

k(α)αj, and αj = 〈α, ej〉. (2.10)

These operators can also be written in the following form

Tjf(x) =
∂

∂x1
f(x) + k1

{f(x)− f(rα1x)}
1− e−〈α1,x〉

+ k2

[f(x)− f(rα3x)

1− e−〈α3,x〉

+
f(x)− f(rα4x)

1− e−〈α4,x〉

]
− (

1

2
k1 + k2)f(x).

.

(2.11)

T2f(x) =
∂

∂x2
f(x) + k1

{f(x)− f(rα2x)}
1− e−〈α2,x〉

+k2

[
− f(x)− f(rα3x)

1− e−〈α3,x〉
+
f(x)− f(rα4x)

1− e−〈α4,x〉

]
− 1

2
k1f(x).

(2.12)

2.3. The eigenfunctions of the Cherednik operators. We denote
by Gλ, λ ∈ C2, the eigenfunction of the operators Tj, j = 1, 2. It is the
unique analytic function on R2 which satisfies the differential difference
system {

TjGλ(x) = −iλjGλ(x), x ∈ R2, j = 1, 2,
Gλ(0) = 1

(2.13)

It is called the Opdam-Cherednik kernel.
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We consider the function Fλ, λ ∈ C2, defined by

∀ x ∈ R2, Fλ(x) =
1

|W |
∑
w∈W

Gλ(wx). (2.14)

This function is the unique analytic W -invariant function on R2, which
satisfies the partial differential equation{

p(T )Fλ(x) = p(−iλ)Fλ(x), x ∈ R2,
Fλ(0) = 1,

(2.15)

for all W -invariant polynomials p on R2 and p(T ) = p(T1, T2). It is called
the Heckman-Opdam kernel.

The functions Gλ and Fλ possess the following properties

i) For all x ∈ R2 the function λ→ Gλ(x) is entire on C2.
ii) We have

∀ x ∈ R2, ∀ λ ∈ C2, Gλ(x) = G−λ(x). (2.16)

iii) We have

∀ x ∈ R2, ∀ λ ∈ C2, |Gλ(x)| ≤ GiIm(λ)(x). (2.17)

iv) We have

∀ x ∈ R2 ,∀ λ ∈ R2, |Gλ(x)| ≤ |W |1/2. (2.18)

∀ x ∈ R2, ∀ λ ∈ R2, |Fλ(x)| ≤ |W |1/2. (2.19)

v) For x ∈ R2, we denote by x+ the only point in the orbit Wx which
lies in a+. Then we have

∀ x ∈ R2, G0(x) �
∏

α∈R+
〈α,x〉≥0

(1 + 〈α, x〉)e−〈ρ,x+〉. (2.20)

vi) The function F0 satisfies the estimate

∀ x ∈ a+, F0(x) � e−〈ρ,x〉
∏
α∈R+

(1 + 〈α, x〉). (2.21)

vii) Let p and q be polynomials of degree m and n. Then there exists a
positive constant M such that for all x ∈ R2 and λ ∈ C2, we have

|p( ∂
∂λ

)q(
∂

∂x
)Gλ(x)| ≤M(1 + ‖λ‖)n(1 + ‖x‖)mF0(x)emaxw∈W Im〈wλ,x〉.

(2.22)
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viii) The function Gλ, λ ∈ C2, admits the following Laplace type repre-
sentation

∀ x ∈ R2, Gλ(x) =

∫
R2

e−i〈λ,y〉dµx(y), (2.23)

where µx is the positive measure on R2 with support in Γ =
conv{wx,w ∈ W} (the convexe hull of the orbit of x under W )
given by the relation (4.33) of [11].

ix) From (2.14), (2.23) we deduce that the function Fλ, λ ∈ C2, pos-
sesses the Laplace type representation

∀ x ∈ R2, Fλ(x) =

∫
R2

e−i〈λ,y〉dµWx (y), (2.24)

where µWx is the positive measure with support in Γ given by

µWx =
1

|W |
∑
w∈W

µwx. (2.25)

3. The transmutation operators associated with the Chered-
nik operators

Notations. We denote by
- E(R2) the space of C∞-functions on R2. Its topology is defined by

the seminorms
qn,K(ϕ) = sup

|µ|≤n
x∈K

|Dµϕ(x)|,

where K is a compact of R2, n ∈ N, and

Dµ =
∂|µ|

∂µ1x1∂µ2x2
, µ = (µ1, µ2) ∈ N2, |µ| = µ1 + µ2.

- D(R2) the space of C∞-functions on R2 with compact support. We
have

D(R2) =
⋃
a>0

Da(R2),

where Da(R2) is the space of C∞-functions on R2 with support in the
closed ball B(0, a) of center 0 and radius a. The topology of Da(R2) is
defined by the semi-norms

pn(ψ) = sup
|µ|≤n

x∈B(0,a)

|Dµψ(x)|, n ∈ N.
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The space D(R2) is equipped with the inductive limit topology.
- S(R2) the classical Scwartz space on R2. Its topology is defined by

the seminorms

Q`,n(f) = sup
|µ|≤n
x∈R2

(1 + ‖x‖2)`|Dµf(x)|, n, ` ∈ N.

- S2(R2) the generalized Schwartz space of C∞-functions on R2 such
that for all `, n ∈ N, we have

P`,n(f) = sup
|µ|≤n
x∈R2

(1 + ‖x‖2)`(F0(x))−1|Dµf(x)| < +∞,

where F0(x) is the Opdam-Cherednik kernel corresponding to the eigen-
value zero.
It is topologized by means of the seminorms P`,n, `, n ∈ N.

By using for x ∈ R2, the positive measure µx given by (2.23), we
define the transmutation operator called also the trigonometric Dunkl
intertwining operator Vk on E(R2) by

∀ x ∈ R2, Vk(g)(x) =

∫
R2

g(y)dµx(y). (3.1)

The operator Vk is the unique linear topological isomorphism from E(R2)
onto itself satisfying the transmutation relations

∀ x ∈ R2, TjVk(g)(x) = Vk(
∂

∂yj
g)(x), j = 1, 2, (3.2)

and the condition
Vk(g)(0) = g(0). (3.3)

The dual tVk of the operator Vk is defined by the following duality
relation ∫

R2

tVk(f)(y)g(y)dy =

∫
R2

Vk(g)(x)f(x)Ak(x)dx, (3.4)

with f in D(R2) and g in E(R2).
This operator is given by

∀ y ∈ R2, tVk(f)(y) =

∫
R2

f(x)dνy(x), (3.5)

where νy, y ∈ R2, is the positive measure on R2 given by the relation
(4.29) of [11], and verifying

νy(K) < +∞, for every compact K ⊂ R2. (3.6)
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The operator tVk is a linear topological isomorphism from
- D(R2) onto itself,
- S2(R2) onto S(R2),

satisfying the transmutation relations

∀ y ∈ R2, tVk((Tj + Sj)f)(y) =
∂

∂yj
tVk(f)(y), j = 1, 2, (3.7)

where Sj is the operator on D(R2) (resp. S2(R2)) given by

∀ x ∈ R2, Sj(h)(x) =
∑
α∈R+

k(α)αjh(rαx). (3.8)

The operator tVk possesses also the following property : for all f in
D(R2) we have

suppf ⊂ B(0, a)⇔ supptVk(f) ⊂ B(0, a), (3.9)

where B(0, a) is the closed ball of center 0 and radius a > 0.

Remark 3.1. By using the measures µWx , x ∈ R2, and νy, y ∈ R2 given
by (2.25) and (3.5) we have defined and studied in [8] the trigonometric
Dunkl intertwining operator V W

k on E(R2)W (the subspace of functions
of E(R2) which are W -invariant) and its dual tV W

k on S2(R2)W (the
subspace of functions of S2(R2) which are W -invariant), and we have
given some properties of these operators.

4. The hypergeometric Fourier transform associated with
the Cherednik operators

Notations.
For a > 0 we denote by PW (C2)a the space of functions h which are

entire on C2 and satisfying

∀ m ∈ N, sm(f) = sup
λ∈C2

(1 + ‖λ‖2)m|h(λ)|e−a‖Im(λ)‖ < +∞.

Its topology is given by the seminorms sm,m ∈ N.
We consider the space PW (C2) of entire functions on C2 which are

rapidly decreasing and of exponential type. We have

PW (C2) = ∪a>0PW (C2)a.
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It is equipped with the inductive limit topology.

Definition 4.1. The hypergeometric Fourier transform H is defined
for f in D(R2) by

∀ λ ∈ C2,H(f)(λ) =

∫
R2

f(x)Gλ(x)Ak(x)dx. (4.1)

Theorem 4.2. The transform H is a topological isomorphism from

i) D(R2) onto PW (C2).
ii) S2(R2) onto S(R2).

The inverse transform H−1 is given by

∀ x ∈ R2,H−1(h)(x) =

∫
R2

h(λ)Gλ(−x)Ck(λ)dλ, (4.2)

where

∀ λ ∈ R2, Ck(λ) = c|Ck(λ)|−2
∏
α∈R+

(1 +
k(α)

i〈λ, ᾰ〉
). (4.3)

with c a normalizing constant and

∀ λ ∈ R2, (Ck(λ))−1 =
∏
α∈R+

Γ(i〈λ, ᾰ〉+ k(α))

Γ(i〈λ, ᾰ〉)
(4.4)

We have

∀ λ ∈ R2, |Ck(λ)|2 = Ck(λ)Ck(−λ) = Ck(λ)Ck(λ). (4.5)

Remark 4.3. The function Ck(λ) is continuous on R2 and satisfies
the following estimate

∀ λ ∈ R2, |Ck(λ)| ≤ const (1 + ‖λ‖2)b (4.6)

for some b > 0.

5. The hypergeometric translation operator and its dual and
the hypergeometric convolution product associated with
the Cherednik operators

5.1. The hypergeometric translation operator and its dual. The
hypergeometric translation operator Tx, x ∈ R2, (see [7]), is defined on
E(R2) by

∀ y ∈ R2, Tx(f)(y) = (Vk)x(Vk)y[V
−1
k (f)(x+ y)]. (5.1)
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We give the following some properties of the operator Tx, x ∈ R2.

1. For all x ∈ R2, the operator Tx is continuous from E(R2) into itself.
2. For all f in E(R2) and x, y ∈ R2, we have

Tx(f)(0) = f(x) and τx(f)(y) = Ty(f)(x). (5.2)

3. For all x, y ∈ R2 and λ ∈ C2, we have the product formula

Tx(Gλ)(y) = Gλ(x)Gλ(y), (5.3)

where Gλ(x) is the Opdam-Cherednik kernel given by (2.13).

For each x ∈ R2, the dual of the hypergeometric translation operator
Tx is the operator tTx defined on D(R2) (resp. S2(R2)) (see [7]) by

∀ y ∈ R2, tTx(f)(y) = (Vk)x(
tV −1k )y[

tVk(f)(y − x)]. (5.4)

It satisfies the following properties.

1. For all x ∈ R2, the operator tTx is continuous from
- D(R2) into itself.
- S2(R2) into itself.

2. The operator tTx, x ∈ R2, is related to the operator Tx, x ∈ R2, by
the following two relations

i) For g in E(R2) and f in D(R2) (resp. S2(R2)) we have∫
R2

Tx(g)(z)f(z)Ak(z)dz =

∫
R2

g(y)tTx(f)(y)Ak(y)dy. (5.5)

ii) For f in D(R2) (resp. S2(R2)) we have

∀ x, y ∈ R2, tTx(f)(y) = Ty(f̆)(−x), (5.6)

where f̆ is the function given by

∀ x ∈ R2, f̆(x) = f(−x).

3. For all f in D(R2) (resp. S2(R2)) and x ∈ R2, we have

∀ λ ∈ R2,H(tTx(f))(λ) = Gλ(x)H(f)(λ). (5.7)

4. For all f in D(R2) (resp. S2(R2)) and x, y ∈ R2, we have

tTx(f)(y) =

∫
R2

Gλ(x)Gλ(−y)H(f)(λ)Ck(λ)dλ. (5.8)

5. For all f in D(R2) (resp. S2(R2)) and x, y ∈ R2, we have
tTx(f)(y) = tT−y(f)(−x) (5.9)
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6. For all f in D(R2) with support in the closed ball B(0, a) of center
0 and radius a > 0, and x ∈ R2, we have

supptTx(f) ⊂ B(0, a+ ‖x‖). (5.10)

5.2. The hypergeometric convolution product. By using the op-
erator tTx, x ∈ R2, we define the hypergeometric convolution product
f ∗H g of the functions f, g in D(R2) (resp. S2(R2)) (see [7]) by

∀ y ∈ R2, f ∗H g(y) =

∫
R2

tTx(f)(y)g(x)Ak(x)dx. (5.11)

The hypergeometric convolution product ∗H satisfies the following prop-
erties.

1. It is commutative and associative.
2. For all f, g in D(R2) (resp. S2(R2)) the function f ∗H g belongs to
D(R2) (resp. S2(R2))

3. For all f, g in D(R2) (resp.S2(R2)), we have

∀ λ ∈ R2,H(f ∗H g)(λ) = H(f)(λ).H(g)(λ). (5.12)

4. For all f, g in D(R2) (resp. S2(R2)), we have

tVk(f ∗H g) = tVk(f) ∗ tVk(g),

where ∗ is the classical convolution product on R2.

6. The heat kernel associated with the Cherednik operators

Definition 6.1. Let t > 0. The heat kernel pt(x, y) associated with
the Cherednik operators, is defined for x, y ∈ R2, by

pt(x, y) =

∫
R2

e−t(‖λ‖
2+‖ρ‖2)Gλ(x)Gλ(−y)Ck(λ)dλ. (6.1)

Notations. We denote by
- Hk the heat operator associated with the Cherednik operators given

by

Hk = Lk −
∂

∂t
− ‖ρ‖2, (6.2)

where Lk is the Heckman-Opdam Laplacian defined for all f of class C2

on R2 by

Lkf = (T1 + T2)f. (6.3)
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It has the following form : For all x ∈ R2
reg,

Lkf(x) = ∆f(x) +
∑

α∈R+
k(α) coth( 〈α,x〉

2
)〈∇f(x), α〉

+
∑

α∈R+

k(α)‖α‖2

4 sinh2
〈α,x〉

2

{f(rαx)− f(x)}+ ‖ρ‖2f(x).
(6.4)

where ∆ and ∇ are respectively the Laplacian and the gradient on R2.
- Et, t > 0, the fundamental solution of the operator Hk given by

∀ x ∈ R2, Et(x) = pt(x, 0). (6.5)

Proposition 6.2.

i) For all t > 0, the function Et belongs to S2(R2).
ii) For all t > 0 and x ∈ R2, we have

Et(x) � t−γ−1

 ∏
α∈R+

Mα(t, x)

 e−t‖ρ‖2−〈ρ,x+〉− ‖x‖2
4t , (6.6)

where x+ denotes the unique conjugate in a+,

γ =
∑
α∈R+

k(α) (6.7)

and

Mα(t, x) = 2−γ−1[(1 + |〈αi, x〉|)(1 + 2t+ |〈α, x〉|)k(α)−1] (6.8)

iii) For all t > 0, we have

∀ λ ∈ R2,H(Et)(λ) = e−t(‖λ‖
2+‖ρ‖2).. (6.9)

iv) The function (x, t)→ Et(x) is strictly positive on R2×]0,+∞[.
v) For all t > 0, we have∫

R2

Et(x)Ak(x)dx = 1. (6.10)

vi) We have
HhEt(x) = 0, on R2×]0,+∞[. (6.11)

Proposition 6.3.

i) For all t > 0 and x ∈ R2, the function y → pt(x, y) belongs to
S2(R2).

ii) For all t > 0 and x, y ∈ R2, we have

pt(x, y) = tTx(Et)(y). (6.12)

iii) The function pt(x, y) is strictly positive on R2 × R2×]0,+∞[.
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iv) For all t > 0 and x ∈ R2, we have∫
R2

pt(x, y)Ak(y)dy = 1. (6.13)

v) For all y ∈ Rd, the function (x, t)→ pt(x, y) satisfies

Hkpt(x, y) = 0, on R2×]0,+∞[. (6.14)

Definition 6.4. The heat semigroup {Pt}t≥0 associated with the
Cherednik operators, is defined for f in S2(R2) by

∀ x ∈ R2, Ptf(x) =


∫
R2

pt(x, y)f(y)Ak(y)dy if t > 0,

f(x) if t = 0.
(6.15)

(See [5]).

Remark 6.5. The function Ptf(x) can also be written in the following
form

∀ x ∈ R2 , Ptf(x) = Et ∗H f̆(−x), (6.16)

where ∗H is the hypergeometric convolution product given by the relation
(5.11), and f̆ is the function defined by

∀ x ∈ R2, f̆(x) = f(x).

We consider the Cauchy problem : Given a continuous bounded func-
tion on R2. Find a function u(x, t) of class C2 on R2×]0,+∞[, such
that {

Hku(x, t) = 0, on R2×]0,+∞[,
u(x, 0) = f(x)

(6.17)

Proposition 6.6.

i) {Pt}t≥0 is a strongly continuous semigroup on S2(R2).
ii) Let f be a continuous bounded function on R2. Then the function

u(x, t) = Ptf(x) solves the Cauchy problem (6.17).

(See [5]).

7. Positivity of the function tTx(pt(u, .)(y)

Proposition 7.1. Let t > 0 and x ∈ R2. We have

∀ u, y ∈ R2, tTx(pt(u, .))(y) =∫
R2

e−t(‖λ‖
2+‖ρ‖2)Gλ(x)Gλ(u)Gλ(−y)Ck(λ)dλ.

(7.1)
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Proof. From Proposition 6.1 i), for all u ∈ R2, the function z →
pt(u, z) belongs to S2(R2). Then by using (5.8) we obtain

∀ u, z ∈ R2, tTx(pt(u, .))(y) =

∫
R2

Gλ(x)Gλ(−y)H(pt(u, .))(λ)Ck(λ)dλ.

(7.2)
On the other hand from (6.12), (5.7), we have

∀ u, λ ∈ R2,H(pt(u, .))(λ) = H(tTu(Et))(λ) = Gλ(u)H(Et)(λ),

thus from (6.9) we obtain

∀ u, λ ∈ R2,H(pt(u, .))(λ) = e−t(‖λ‖
2+‖ρ‖2)Gλ(u). (7.3)

We deduce (7.1) from (7.2), (7.3).

Corollary 7.2. Let t > 0 and x ∈ R2. We have

∀ u, y ∈ R2, tTx(pt(u, .))(y) = e−t‖ρ‖
2

∫
R2

Ut,x(−y, z)dµ̆u(z), (7.4)

where µu is the measure given by (2.23) and µ̆u is the measure on R2

defined by ∫
R2

f(z)dµ̆u(z) =

∫
R2

f(−z)dµu(z), f ∈ E(R2), (7.5)

and

Ut,x(y, z) =

∫
R2

e−t‖λ‖
2

Gλ(x)Gλ(y)ei〈λ,z〉Ck(λ)dλ. (7.6)

Proof. We deduce (7.4) from (7.1), (2.18), (2.23), the positivity of the
measure µ̆x and Fubini’s theorem.

In this section we prove first that for t > 0 and x ∈ R2, the func-
tion (y, z) → Ut,x(y, z) is positive on R2 × R2, and next we deduce the
positivity of the function tTx(pt(u, .))(y).

Proposition 7.3. Let t > 0 and x ∈ R2. The function Ut,x(y, z) is of
class C∞ on R2 × R2 with respect to the variables y and z and satisfies
the equation

∀ y, z ∈ R2, (Tj +
∂

∂zj
)Ut,x(y, z) = 0, j = 1, 2. (7.7)

Proof. We obtain the results by derivation under the integral sign
with respect to the variables yj, zj, j = 1, 2, in the relation (7.6) by
using (2.22), (2.19), and by applying the relation (2.13).
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Proposition 7.4.

i) Let t > 0 and x ∈ R2. There exists a positive function M0(t) such
that

∀ y, z ∈ R2, |Ut,x(y, z)| ≤M0(t)
∏
α∈R+

(1 + |〈α, y〉|)e−〈ρ,y+〉, (7.8)

where y+ is the only point in the orbit Wy which lies in a+.
ii) Let t > 0 and x ∈ R2. We have

∀ y ∈ R2, lim
‖z‖→+∞

Ut,x(y, z) = 0. (7.9)

iii) Let t > 0 and x ∈ R2. The function (y, z)→ Ut,x(y, z) is bounded
on R2 × R2 and we have

lim
‖(y,z)‖→+∞

Ut,x(y, z) = 0. (7.10)

Proof.

i) We deduce (7.8) from (7.6), (2.17), (2.20).
ii) By using (7.6) and the fact that from (2.18) the function

e−t‖λ‖
2
Gλ(x)Gλ(y) is for all x, y ∈ R2, integrable with respect to the

Lebesgue measure on R2 , we deduce (7.9) from Riemann-Lebesgue
Lemma.

iii) - The relations (7.6), (2.18) imply that the function (y, z)→ Ut,x(y, z)
is bounded on R2 × R2.

- We deduce (7.10) from (7.8), (7.9).

Proposition 7.5.

i) Let t > 0 and x ∈ R2. For all y, z ∈ R2 the function Ut,x(y, z) is
real.

ii) Let t > 0 and x ∈ R2. The function Ut,x(y, z) is strictly positive
on the set

Y = {(y, z) ∈ R2 × R2 ; y ∈ R2, z = 0}.

Proof.

i) We obtain the result from the relations (7.6), (2.16), (4.3), (4.5)
and a change of variables.

ii) By using the relation

∀ λ ∈ R2, Gλ(0) = 1,
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we deduce from (7.6), (7.4), (3.1), (3.3), (6.1) and Proposition 6.2 iii),
that

∀ y ∈ R2, Ut,x(y, 0) = e−t‖ρ‖
2

pt(x, y) > 0.

Proposition 7.6. Let t > 0 and x ∈ R2. For all α ∈ R+, and
y, z ∈ R2, we have

Ut,x(rαiy, z)− Ut,x(y, z) = −〈ᾰ, y〉〈∇Ut,x(y, z), α〉
+1

2
(〈ᾰ, y〉)2αtD2Ut,x(ξ, z)α,

(7.11)

with some ξ on the line segment between y and rαy.

Proof. We obtain (7.11) from the relation (2.5) and Taylor’s formula.

Proposition 7.7. The Weyl chambers attached to the root system
of type B2 are the following{

a+ = {x ∈ R2; 〈αi, x〉 > 0, i = 1, 2, 3, 4}
a− = −a+ (7.12){

a+1 = {x ∈ R2; 〈αi, x〉 > 0, i = 1, 3, 4; 〈α2, x〉 < 0}
a−1 = −a+1

(7.13){
a+2 = {x ∈ R2; 〈αi, x〉 > 0, i = 1, 2, 4; 〈α3, x〉 < 0}
a−3 = −a+2

(7.14){
a+3 = {x ∈ R2; 〈αi, x〉 > 0, i = 2, 4; 〈αi, x〉 < 0, i = 1, 3}
a−3 = −a+3

(7.15)

Proof. We determine the Weyl chambers corresponding to the four
roots of R+, and next by applying the relations{

α1 − α2 = α3

α1 + α2 = α4

we obtain the Weyl chambers (7.12), (7.13), (7.14), (7.15), the others
are empty.

Notations. We denote by C`, ` = 1, 2, 3, 4, the Weyl chambers
a+, a+1 , a

+
2 , a

+
3 and by C`, ` = 5, 6, 7, 8, the Weyl chambers a−, a−1 , a

−
2 , a

−
3 .

Then we have

R2 =
8⋃
`=1

C`,

where C` is the closure of C`.
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Theorem 7.8. For all t > 0, and x ∈ R2 we have

∀ y, z ∈ R2 , Ut,x(y, z) ≥ 0. (7.16)

Proof. The proof is made up in two steps.

In the first step we obtain some results concerning the positivity of the
function Ut,x(y, z) given by (7.6) on each of the step C`×R2, ` = 1, 2, ..., 8.

In the second step we use the fact that R2 × R2 = (∪8`=1C`) × R2

and the result of the first set to deduce the positivity of the function
Ut,x(y, z) on R2 × R2.

1st Step

We consider the set Y` defined by

Y` = {(y, z) ∈ R2 × R2 ; y ∈ C`, z ∈ R2}.

We denote by

V`t,x(y, z) = Ut,x(y, z)1Y`(y, z),

where 1Y` is the characteristic function of the set Y`. From Proposi-
tion 7.5 ii) the function V`t,x(y, z) is strictly positive on the set Y . We
shall prove that it is positive on the set Y`\Y . If not we suppose by
using Proposition 7.5 i) and Proposition 7.4 iii) that it attains a strictly
negative absolute minimum at (y`, z`) ∈ Y`\Y i.e.

V`t,x(y`, z`) = inf
(y,z)∈Y`

V`t,x(y, z) < 0. (7.17)

There are two possibilities : The point (y`, z`) is in the open subset
(Y`\Y )0 of the set Y`\Y , or in the set

Y 0
` = {(y, z) ∈ R2 × R2 ; y ∈ ∂C`, z ∈ R2}. (7.18)

We suppose that (y`, z`) ∈ (Y`\Y )0. As the point (y`, z`) is an absolute
minimum, then we have

∂

∂yj
V`t,x(y`, z`) =

∂

∂zj
V`t,x(y`, z`) = 0, j = 1, 2. (7.19)

By using the fact that

∀ α ∈ R+, (rαy
`, z`) /∈ Y`,
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and by applying the relations (7.7), (2.11), (2.12), (7.19), we get{
k1

( 1

1− e−〈α1,x`〉
− 1

2

)
+

k2

[( 1

1− e−〈α3,x`〉
− 1

2

)
+
( 1

1− e−〈α4,x`〉
− 1

2

)]}
V`s(x`, u`) = 0,

.

(7.20){
k1

( 1

1− e−〈α2,x`〉
− 1

2

)
+

k2

[
−
( 1

1− e−〈α3,x`〉
− 1

2

)
+
( 1

1− e−〈α4,x`〉
− 1

2

)]}
V`s(x`, u`) = 0,

.

(7.21)
Using the fact that from (7.17) the function V`s(x`, u`) is different from
zero and that k2 > 0, the equations (7.20), (7.21) can also be written in
the form

k1
k2
X`

1 +X`
3 +X`

4 = 0, (7.22)

k1
k2
X`

2 −X`
3 +X`

4 = 0, (7.23)

with

X`
i =

1 + e−〈αi,x
`〉

1− e−〈αi,x`〉
, i = 1, 2, 3, 4. (7.24)

Then the X`
i , i = 1, 2, 3, 4, are solutions of the system of linear equations

(S) on R4 :

(S)

{ k1
k2
X1 +X3 +X4 = 0,

k1
k2
X2 −X3 +X4 = 0.

(7.25)

On the other hand from (7.24) we obtain

e−〈αi,x
`〉 =

X`
i − 1

X`
i + 1

, i = 1, 2, 3, 4. (7.26)

We consider the function f defined on R\{−1} by

f(y) =
y − 1

y + 1
,

we have

f(y) ≤ 0⇔ y ∈]− 1, 1], (7.27)

0 < f(y) < 1⇔ y ∈]1,+∞[, (7.28)

f(y) > 1⇔ y ∈]−∞,−1[, (7.29)
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From the relation (7.26), we have

e−〈αi,x
`〉 = f(X`

i ), i = 1, 2, 3, 4. (7.30)

As the first member of (7.30) is strictly positive, then from (7.27) the
X`
i , i = 1, 2, 3, 4, are not in the interval ]− 1, 1[. They are in the interval

]−∞,−1[∪]1,+∞[. We consider two cases
1st Case

1. If x` ∈ C`, ` = 1, 2.
From the relations (7.12), (7.13) we have 〈αi, x`〉 > 0 for i = 1, 3, 4.
Then by using (7.30), (7.28) we obtain

X`
i ∈]1,+∞[, i = 1, 3, 4. (7.31)

By applying (7.31) we get

k1
k2
X`

1 +X`
3 +X`

4 >
k1
k2

+ 2 > 0.

Thus from (7.22) we obtain an absurdity, and then the X`
i , i =

1, 2, 3, 4, are not solutions of the system (S) given by (7.25).
2. If x` ∈ C`, ` = 3, 4.

From the relation (7.14),(7.15) we have 〈αi, x`〉 > 0 for i = 2, 4, and
〈α3, x

`〉 < 0. Then by using (7.30), (7.28), (7.29), we obtain

X`
i ∈]1,+∞[, i = 2, 4, and X`

3 ∈]−∞,−1[. (7.32)

By applying (7.32) we get

k1
k2
X`

2 −X`
3 +X`

4 >
k1
k2

+ 2 > 0.

Thus from (7.23) we obtain an absurdity, and then the X`
i , i =

1, 2, 3, 4, are not solution of the system (S) given by (7.25).

2nd Case : If x` ∈ C`, ` = 5, 6, 7, 8.
The same proof as for the first case shows that when x` ∈ C`, ` =
5, 6, 7, 8, we obtain an absurdity, and then the X`

i , i = 1, 2, 3, 4, are not
solutions of the system (S) given by (7.25).

From the first and second cases we deduce that our supposition that
the function V`t,x(y, z) attains a strictly negative absolute minimum at

(y`, z`) in (Y`\Y )0 is absurd. Then the point (y`, z`) does not belong to
(Y`\Y )0, and it is in the set Y 0

` .
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2nd Step
From Proposition 7.5 ii) the function Ut,x(y, z) is strictly positive on

the set Y .
We shall prove that the function Ut,x(y, z) is positive on the set R2 ×
R2\Y . If not we suppose by using Proposition 7.5.i) and Proposition
7.4 iii) that it attains a strictly negative absolute minimum at (y0, z0) ∈
R2 × R2\Y .
From the first step and the relation R2 = ∪8`=1C`, the point (y0, z0) is in
the set

Y 0 =
8⋃
`=1

Y 0
` ,

with Y 0
` given by (7.18). We have

Y 0 = {(y, z) ∈ R2 × R2 ;∀ α ∈ R+, 〈α, y〉 = 0, z ∈ R2},
then

∀ α ∈ R+, 〈α, y0〉 = 0.

We shall prove in the following that the point (y0, z0) is not in the set
Y 0.
As the point (y0, z0) is a strictly negative absolute minimum, then we
have the following relations

Ut,x(y0, z0) = inf
(y,z)∈R2×R2

Ut,x(y, z) < 0, (7.33)

and
∂

∂y1
Ut,x(y0, z0) =

∂

∂z1
Ut,x(y0, z0) = 0 . (7.34)

We write the relations (7.6), (7.7), (2.11) for y, z0, and we get

∂

∂y1
Ut,x(y, z0) +

∂

∂z1
Ut,x(y, z0) + k1

Ut,x(y, z0)− Ut,x(rα1y, z0)

1− e−〈α1,x〉
+

k2

[Ut,x(y, z0)− Ut,x(rα3y, z0)

1− e−〈α3,x〉
+
Ut,x(y, z0)− Ut,x(rα4y, z0)

1− e−〈α4,x〉

]
= (

1

2
k1 + k2)Ut,x(y, z0).

(7.35)
Then by passing to the limit in (7.35), when 〈α, y〉, for all α ∈ R+, goes
to 〈α, y0〉 = 0, and by using Proposition 7.6 and the relation (7.34), we
obtain

(
1

2
k1 + k2)Ut,x(y0, z0) = 0.
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As k1 > 0, and k2 > 0 then

Ut,x(y0, z0) = 0. (7.36)

Thus (7.33) and (7.36) imply a contradiction, and the point (y0, z0) is
not in the set Y 0.
Then the function Ut,x(y, z) is positive on the set R2 × R2\Y . We de-
duce the relation (7.16) from this result and the fact that the function
Ut,x(y, z) is positive on the set Y .

Theorem 7.9. Let t > 0 and x ∈ R2. Then we have

∀ , u, y ∈ R2, tTx(pt(u, .))(y) ≥ 0. (7.37)

Proof. We deduce (7.37) from the relation (7.4), the positivity of the
measure µ̆x given by (7.5) and Theorem 7.8.

8. Positivity of the hypergeometric translation operator and
of its dual

Theorem 8.1. For all positive function g in E(R2), we have

∀ x, u ∈ R2, Tx(g)(u) ≥ 0. (8.1)

Proof. []
- For x = 0
From the relation (5.2) we have

T0(g)(u) = g(u) ≥ 0.

- For x ∈ R2\{0}
We consider tow cases.

1st Case : We suppose that the function g belongs to D(R2).
Let t > 0 and u ∈ R2. From Proposition 6.2 i) the function z → pt(u, z)
belongs to S2(R2). On the other hand by using the properties of the
operators Tx and tTx and the relations (5.6), (5.5), we obtain∫

R2

Tx(g)(z)pt(u, z)Ak(z)dz =

∫
R2

g(y)tTx(pt(u, .))(y)Ak(y)dy.

As from (7.37) the second member of this relation is positive, then we
have ∫

R2

Tx(g)(z)pt(u, z)Ak(z)dz ≥ 0.
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By using (6.15) this relation can also be written in the form

Pt(Tx(g))(u) ≥ 0. (8.2)

As the function Tx(g) belongs to D(R2), then from Proposition 6.5 ii)
we obtain

lim
t→0

Pt(Tx(g))(u) = Tx(g)(u) ≥ 0.

2nd Case : We suppose that the function g is in E(R2). Let ϕ be a
positive function in D(R2) radial such that supp ϕ ⊂ B(0, 2), ϕ(y) = 1
for all y ∈ B(0, 1), and for all y ∈ R2, 0 ≤ ϕ(y) ≤ 1. We consider the
sequence {ϕn}n∈N\{0} defined by

∀ y ∈ R2, ϕn(y) = ϕ(
y

n
).

As the function gϕn belongs to D(R2), then from the first case, we have

∀ x, u ∈ R2, Tx(gϕn)(x) ≥ 0. (8.3)

We obtain (8.1) by using (8.3) and the fact that the sequence {gϕn}n∈N\{0}
converges to the function g in E(R2).

Corollary 8.2. For all positive function f in D(R2) (resp. S2(R2)),
we have

∀ x, y ∈ R2, tTx(f)(y) ≥ 0. (8.4)

Proof. We deduce (8.4) from the relation (5.6) and Theorem 8.1.

Theorem 8.3. There exists a σ-algebra m in R2 which contains all
Borel sets in R2, and for each x, u ∈ R2, there exists a unique positive
measure mx,u on R2 with compact support such that for every g in E(R2),
we have

Tx(g)(u) =

∫
R2

g(z)dmx,u(z). (8.5)

Proof. We obtain the results from the relation (8.1) and Theorem
2.14, of [4] p.42.

Remark 8.4. By using the relations (5.6), (8.5), we obtain for all
f in D(R2) and u, y ∈ R2 the following integral representation of the
function tTu(f)(y) :

tTu(f)(y) =

∫
R2

f(z)dm̌y,−u(z). (8.6)
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where m̆y,−u is the positive measure on R2 given by∫
R2

f(z)dm̆y,−u(z) =

∫
R2

f̆(z)dmy,−u(z), f ∈ E(R2). (8.7)

Corollary 8.5. The product formula (5.3) can also be written in
the form

∀ x, u ∈ R2, ∀ λ ∈ C2, Gλ(x)Gλ(u) =

∫
R2

Gλ(z)dmx,u(z). (8.8)

Proof. We deduce the relation (8.8) from Theorem 8.3 and the fact
that for all λ ∈ C2, the function Gλ(x) belongs to E(R2).

Corollary 8.6. For all x, u ∈ R2, we have

‖mx,u‖ = mx,u(1) = 1. (8.9)

Proof. From the relations (2.9), (2.13) the function f(x) = G−iρ(x) is
the unique solution satisfying f(0) = 1 of the system

∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} = 0, j = 1, 2, x ∈ R2.

But the constant function f(x) = 1 is also a solution of this system.
Thus

∀ x ∈ R2, G−iρ(x) = 1. (8.10)

we obtain (8.9) by taking λ = −iρ in the relation (8.8) and by using
(8.10).

Corollary 8.7. The Cherednik-Opdam kernel Gλ(x) admits the
following estimate

∀ x ∈ R2, ∀ λ ∈ R2, |Gλ(x)| ≤ 1. (8.11)

Proof. From the relations (8.8), (2.18), for all λ ∈ R2, we have(
sup
x∈R2

|Gλ(x)|
)(

sup
u∈R2

|Gλ(u)|
)
≤
∫
R2

(
sup
z∈R2

|Gλ(z)|
)
dmx,u(z).

Thus by applying (8.9) we get

sup
x∈R2

|Gλ(x)| ≤
∫
Rd
dmx,u(z) = 1.

We deduce (8.11) from this relation.
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Proposition 8.8. For all x, u ∈ R2, we have

suppmx,u ⊂ {z ∈ R2 ; |‖x‖ − ‖u‖| ≤ ‖z‖ ≤ ‖x‖+ ‖u‖}. (8.12)

To prove this Proposition we need the following Lemma.

Lemma 8.9. Let x, u ∈ R2 and f be in D(R2). if the support of f is
contained in the closed ball B(0, |‖x‖ − ‖u‖|), we have

Tx(f)(u) = 0. (8.13)

Proof. Set η = |‖x‖ − ‖u‖|. By the relation

Tx(f)(y) = Ty(f)(x),

we may suppose that ‖x‖ ≤ ‖u‖. Let y = η + ‖x‖σ, with σ in the unit
sphere S1 of R2.
From (5.6), (5.10), we deduce that

Tx(f)(y) = 0.

By replacing η by its value in y, we obtain y = ‖u‖σ. Thus

Tx(f)(u) = 0.

Proof of Proposition 8.8
For all x, u ∈ R2, the relation (8.8) can also be written in the form

∀ λ ∈ C2,H(mx,u)(λ) = Gλ(x)Gλ(u), (8.14)

where H is the hypergeometric Fourier transform of the measure mx,u

which is of compact support.
On the other hand from the relation (2.22), (2.19) there exists a positive
constant M0 such that

∀ λ ∈ Cd, |Gλ(x)Gλ(u)| ≤M0e
(‖x‖+‖u‖)‖Imλ‖,

and thus (8.14) implies

∀ λ ∈ C2, |H(mx,u)(λ)| ≤M0e
(‖x‖+‖u‖)‖Imλ‖.

From this relation and Theorem 2.4 of [7] , we deduce that

suppmx,u ⊂ B(0, ‖x‖+ ‖u‖). (8.15)

We obtain (8.12) from Lemma 8.9 and (8.15).
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9. Positivity of the hypergeometric translation operator and
its dual associated with the Heckman-Opdam theory

We consider the trigonometric Dunkl intertwining operator V W
k and

its dual tV W
k associated with the Heckman-Opdam theory, defined re-

spectively on the spaces E(R2)W and D(R2)W (resp. S2(R2)W ) and sign-
posted to Remark 3.1 (see also [8]).

The hypergeometric translation operator T Wx , x ∈ R2, associated with
the Heckman-Opdam theory, is defined on E(R2)W by

∀ y ∈ R2, T Wx (f)(y) = (V W
k )x(V

W
k )y[(V

W
k )−1(x+ y)]. (9.1)

(see [8]).
The dual tT Wx , x ∈ R2, of the operator T Wx , x ∈ R2, is defined on

D(R2)W (resp. S2(R2)W ) by

∀ y ∈ R2, tT Wx (f)(y) = T Wy (f)(−x). (9.2)

The main properties satisfied by the operator T Wx , x ∈ R2, are the
following.

1. For all x ∈ R2, the operator T Wx is continuous from
- D(R2)W into itself.
- S2(R2)W into itself.

2. For all x, y ∈ R2 and λ ∈ C2, we have the product formula

Tx(Fλ)(y) = Fλ(x)Fλ(y). (9.3)

for the Heckman-Opdam kernel Fλ(x) defined by (2.14).
3. For all f in D(R2)W (resp. S2(R2)W ) and x, y ∈ R2, we have

T Wx (f)(y) =

∫
R2

Fλ(x)Fλ(−y)HW (f)(λ)CWk (λ)dλ, (9.4)

where

CWk (λ) = c|Ck(λ)|−2,
with c is a normalizing constant, |Ck(λ)|−2 the function given by (4.4),
(4.5), and HW is the hypergeometric Fourier transform associated with
the Heckman-Opdam theory defined on D(R2)W (resp. S2(R2)) by

∀ λ ∈ R2,HW (f)(λ) =

∫
R2

f(x)Fλ(x)Ak(x)dx. (9.5)

By using the results of section 8, we deduce the following results.
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Theorem 9.1. For all x, u ∈ R2 and g in E(R2)W we have

T Wx (g)(x) =

∫
R2

g(z)dmW
x,u(z), (9.6)

with

mW
x,u =

1

|W |2
∑

w,w′∈W

mwx,w′u, (9.7)

where mx,u is the measure given by (8.5).

Proposition 9.2.

i) The product formula (9.3) can also be written in the form

∀ x, u ∈ R2,∀ λ ∈ C2, Fλ(x)Fλ(u) =

∫
R2

Fλ(z)dmW
x,u(z). (9.8)

ii) For all x, u ∈ R2, we have

‖mW
x,u‖ = mW

x,u(1) = 1. (9.9)

iii) For all x, u ∈ R2, we have

suppmW
x,u ⊂ {z ∈ R2 ; |‖x‖ − ‖u‖| ≤ ‖z‖ ≤ ‖x‖+ ‖u‖}. (9.10)

Proposition 9.3. The Heckman-Opdam hypergeometric function
Fλ(x) admits the following estimate

∀ x ∈ R2,∀ λ ∈ R2, |Fλ(x)| ≤ 1. (9.11)
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[8] K. Trimèche, Hypergeometric convolution structure on Lp-spaces and Applica-
tions, for the Heckman-Opdam theory, Preprint. Faculty of Sciences of Tunis.
2012.
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