DOI QR코드

DOI QR Code

증기폭발에 의한 압력이력 평가

Evaluation of Pressure History due to Steam Explosion

  • 투고 : 2013.04.09
  • 심사 : 2014.02.03
  • 발행 : 2014.04.01

초록

신규 원전에서 추진중인 외벽침수냉각 방식의 적용이 실패할 경우 노심용융물과 원자로공동 내유체의 상호작용으로 인해 증기폭발이 발생하며, 이는 격납건물 및 관통부 배관을 포함한 각 구조물의 건전성을 위협할 수 있다. 본 논문에서는 선행연구 분석결과를 토대로 증기폭발 현상을 모사할 수 있는 개선된 해석기법을 도출하고 알루미나 실험 모사를 통해 타당성을 확인하였다. 또한 동일한 기법을 원자로공동 해석에 적용하여 가상 파손위치에 따른 증기폭발 압력이력을 예측하였으며, 측면파손에 의한 최대압력 값이 하부파손에 의한 것보다 최대 70% 정도 높음을 보였다.

Steam explosions can be caused by fuel-coolant interactions resulting from failure of the external vessel cooling system in a new nuclear power plant. This can threaten the integrity of structures, including the nuclear reactor and the containment building. In the present study, an improved technique for analyzing the steam explosion phenomenon was proposed on the basis of previous research and was verified by simulations involving alumina experiments. Also, the improved analysis technique was applied to determine the pressure history of the reactor cavity in accordance with postulated failure locations. The results of the analysis revealed that the effects of vessel side failure are more serious than those of vessel bottom failure, with approximately 70% higher maximum pressure.

키워드

참고문헌

  1. Flectcher, D. F., 1995, "Validation of the CHYMES Mixing Model," Nuclear Engineering and Design, Vol. 155, pp.85-96. https://doi.org/10.1016/0029-5493(94)00871-U
  2. Liu, J. and Koshizuka, S., 2002, "Propagation Investigations Using the CULDESAC Model," Nuclear Engineering and Design, Vol. 216, pp. 121-137. https://doi.org/10.1016/S0029-5493(02)00051-1
  3. Fletcher, D. F., 1992, "A Comparison of Mixing Predictions Obtained from the CHYMES and PMALPHA Models," Nuclear Engineering and Design, Vol. 135, pp. 419-425. https://doi.org/10.1016/0029-5493(92)90208-D
  4. Sandia National Lab., 1999, "IFCI 7.0 Models and Correlations," SAND99-1000.
  5. Corradini, M. L., Murphy, J. and Nilsuwankosit, S., 2002, "User's Manual for TEXAS-V one Dimensional Transient Fluid Model," University of Wisconsin.
  6. Kim, B. J., 1986, "Overview of Steam Explosion," Trans. Korean Soc. Mech. Eng., Vol. 28, pp. 270-280.
  7. JAERI, 1997, "Proceedings of the OECD/CSNI Specialist Meeting on Fuel-Coolant Interaction," NEA/CSNI/R.
  8. OECD/NEA, 2007, "OECD Research Programme on Fuel-Coolant Interaction: SERENA Final Report," NEA/CSNI /R.
  9. Park, I. K., Kim, J. H. and Min, B. T., 2009, "An Evaluation of the Ex-Vessel Steam Explosion Load Against TROI Experimental Result," Nuclear Engineering and Design, Vol. 33, pp. 622-628.
  10. Cizelj, L., Koncar, B. and Leskovar, M., 2006, "Vulnerability of a Partially Flooded PWR Reactor Cavity to a Steam Explosion," Nuclear Engineering and Design, Vol. 236, pp. 1617-1627. https://doi.org/10.1016/j.nucengdes.2006.04.018
  11. ANASYS CFX, 2012, "Introduction of CFX Ver. 14.0," ANASYS Inc.
  12. Huhtiniemi, I., Magallon, D. and Hohmannn, H., "Results of Recent KROTOS FCI Test: Alumina Versus Corium Melts," 1999, Nuclear Engineering and Design, Vol. 189, pp. 379-389. https://doi.org/10.1016/S0029-5493(98)00269-6
  13. Sehgal, B. R., Theerthan, A., Giri, A., Karbojian, A., Willschutz, H. G., Kymalainen, O., Vandroux, S., Bonnet, J. M., Seiler, J. M., Ikkonen, K., Sairanen, R., Bhandari, S., Burger, M., Buck, M., Widmann, M., Dienstbier, J., Techy, Z., Kostka, P., Taubner, R., Theofanous, T. and Dinh, T. N., 2005, "Assessment of Reactor Integrity," Nuclear Engineering and Design, Vol. 235, pp. 213-232. https://doi.org/10.1016/j.nucengdes.2004.08.055
  14. OECD/CSNI/NEA, 2002, "OECD Lower Head Failure Project Final Report ," NEA/CSNI/R.
  15. Kim, H. D., Kim, D. H., Kim, J. T., Kim, S. B., Song, J. H. and Hong, S. W., 2009, "Investigation on the Resolution of Severe Accident Issues for Korean Nuclear Power Plants," Nuclear Engineering and Technology, Vol. 41, pp. 617-648. https://doi.org/10.5516/NET.2009.41.5.617