DOI QR코드

DOI QR Code

NF-κB in Cellular Senescence and Cancer Treatment

  • Jing, Hua (MKFZ, Charite - Universitatsmedizin Berlin and Max-Delbruck-Centrum for Molecular Medicine) ;
  • Lee, Soyoung (MKFZ, Charite - Universitatsmedizin Berlin and Max-Delbruck-Centrum for Molecular Medicine)
  • Received : 2013.11.25
  • Accepted : 2013.11.28
  • Published : 2014.03.31

Abstract

The NF-${\kappa}B$ pathway transcriptionally controls a large set of target genes that play important roles in cell survival, inflammation, and immune responses. While many studies showed anti-tumorigenic and pro-survival role of NF-${\kappa}B$ in cancer cells, recent findings postulate that NF-${\kappa}B$ participates in a senescence-associated cytokine response, thereby suggesting a tumor restraining role of NF-${\kappa}B$. In this review, we discuss implications of the NF-${\kappa}B$ signaling pathway in cancer. Particularly, we emphasize the connection of NF-${\kappa}B$ with cellular senescence as a response to chemotherapy, and furthermore, present examples how distinct oncogenic network contexts surrounding NF-${\kappa}B$ produce fundamentally different treatment outcomes in aggressive B-cell lymphomas as an example.

Keywords

References

  1. Acosta, J.C., O'Loghlen, A., Banito, A., Guijarro, M.V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., et al. (2008). Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell 133, 1006-1018. https://doi.org/10.1016/j.cell.2008.03.038
  2. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511. https://doi.org/10.1038/35000501
  3. Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., et al. (2007). Frequent engagement of the classical and alternative NF-$\kappa{B}$pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115-130. https://doi.org/10.1016/j.ccr.2007.07.004
  4. Arkan, M.C., and Greten, F.R. (2011). IKK- and NF-$\kappa{B}$-mediated functions in carcinogenesis. Curr. Top. Microbiol. Immunol. 349, 159-169.
  5. Baldwin, A.S. (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J. Clin. Invest. 107, 241-246. https://doi.org/10.1172/JCI11991
  6. Basseres, D.S., and Baldwin, A.S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25, 6817-6830. https://doi.org/10.1038/sj.onc.1209942
  7. Basseres, D.S., Ebbs, A., Levantini, E., and Baldwin, A.S. (2010). Requirement of the NF-$\kappa{B}$subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res. 70, 3537-354. https://doi.org/10.1158/0008-5472.CAN-09-4290
  8. Ben-Neriah, Y., and Karin, M. (2011). Inflammation meets cancer, with NF-$\kappa{B}$as the matchmaker. Nat. Immunol. 12, 715-723. https://doi.org/10.1038/ni.2060
  9. Bonizzi, G., and Karin, M. (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280-288. https://doi.org/10.1016/j.it.2004.03.008
  10. Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A.H., Schlegelberger, B., Stein, H., Dorken, B., Jenuwein, T., and Schmitt, C.A. (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660-665. https://doi.org/10.1038/nature03841
  11. Calado, D.P., Zhang, B., Srinivasan, L., Sasaki, Y., Seagal, J., Unitt, C., Rodig, S., Kutok, J., Tarakhovsky, A., Schmidt-Supprian, M., et al. (2010). Constitutive canonical NF-$\kappa{B}$activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 18, 580-589. https://doi.org/10.1016/j.ccr.2010.11.024
  12. Catz, S.D., and Johnson, J.L. (2001). Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20, 7342-7351. https://doi.org/10.1038/sj.onc.1204926
  13. Chang, B.D., Broude, E.V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., Kandel, ES., Lausch, E., Christov, K., and Roninson, I.B. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59, 3761-3767.
  14. Compagno, M., Lim, W.K., Grunn, A., Nandula, S.V., Brahmachary, M., Shen, Q., Bertoni, F., Ponzoni, M., Scandurra, M., Califano, A., et al. (2009). Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459, 717-721. https://doi.org/10.1038/nature07968
  15. Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
  16. Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  17. Davis, R.E., Brown, K.D., Siebenlist, U., and Staudt, L.M. (2001). Constitutive nuclear factor kappa B activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194, 1861-1874. https://doi.org/10.1084/jem.194.12.1861
  18. Franzoso, G., Bours, V., Park, S., Tomita-Yamaguchi, M., Kelly, K., and Siebenlist, U. (1992). The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-$\kappa{B}$-mediated inhibition. Nature 359, 339-342. https://doi.org/10.1038/359339a0
  19. Guttridge, D.C., Albanese, C., Reuther, J.Y., Pestell, R.G., and Baldwin, A.S. Jr. (1999). NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19, 5785-5799. https://doi.org/10.1128/MCB.19.8.5785
  20. Grivennikov, S., Greten, F.R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883-899. https://doi.org/10.1016/j.cell.2010.01.025
  21. Hayden, M.S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes Dev. 18, 2195-2224. https://doi.org/10.1101/gad.1228704
  22. Hayden, M.S., and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell 132, 344-362. https://doi.org/10.1016/j.cell.2008.01.020
  23. Heyninck, K., and Beyaert, R. (2005). A20 inhibits NF-$\kappa{B}$activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 30, 1-4. https://doi.org/10.1016/j.tibs.2004.11.001
  24. Huang, J.Z., Sanger, W.G., Greiner, T.C., Staudt, L.M., Weisenburger, D.D., Pickering, D.L., Lynch, J.C., Armitage, J.O., Warnke, R.A., Alizadeh, A.A., et al. (2002). The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99, 2285-2290. https://doi.org/10.1182/blood.V99.7.2285
  25. Inokuchi, S., Aoyama, T., Miura, K., Osterreicher, C.H., Kodama, Y., Miyai, K., Akira, S., Brenner, D.A., and Seki, E. (2010). Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc. Natl. Acad. Sci. USA 107, 844-849. https://doi.org/10.1073/pnas.0909781107
  26. Iqbal, J., Sanger, W.G., Horsman, D.E., Rosenwald, A., Pickering, D.L., Dave, B., Dave, S., Xiao, L., Cao, K., Zhu, Q., et al. (2004). BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am. J. Pathol. 165, 159-166. https://doi.org/10.1016/S0002-9440(10)63284-1
  27. Kaltschmidt, B., Kaltschmidt, C., Hofmann, T.G., Hehner, S.P., Droge, W., and Schmitz, M.L. (2000). The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur. J. Biochem. 267, 3828-3835. https://doi.org/10.1046/j.1432-1327.2000.01421.x
  28. Kasibhatla, S., Genestier, L., and Green, D.R. (1999). Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. J. Biol. Chem. 274, 987-992. https://doi.org/10.1074/jbc.274.2.987
  29. Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W.J., Van Wier, S., Tiedemann, R., Shi, C.X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-$\kappa{B}$pathway in multiple myeloma. Cancer Cell 12, 131-144. https://doi.org/10.1016/j.ccr.2007.07.003
  30. Keller, U., Huber, J., Nilsson, J.A., Fallahi, M., Hall, M.A., Peschel, C., and Cleveland, J.L. (2010). Myc suppression of Nfkb2 accelerates lymphomagenesis. BMC Cancer 10, 348. https://doi.org/10.1186/1471-2407-10-348
  31. Kortlever, R.M., Higgins, P.J., and Bernards, R. (2006). Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877-884. https://doi.org/10.1038/ncb1448
  32. Kuilman, T., and Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81-94. https://doi.org/10.1038/nrc2560
  33. Kuilman, T., Michaloglou, C., Vredeveld, L.C., Douma, S., van Doorn, R., Desmet, C.J., Aarden, L.A., Mooi, W.J., and Peeper, D.S. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031. https://doi.org/10.1016/j.cell.2008.03.039
  34. Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes Dev. 24, 2463-2479. https://doi.org/10.1101/gad.1971610
  35. Lam, L.T., Davis, R.E., Pierce, J., Hepperle, M., Xu, Y., Hottelet, M., Nong, Y., Wen, D., Adams, J., Dang, L., et al. (2005). Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin. Cancer Res. 11, 28-40.
  36. Lenz, G., Davis, R.E., Ngo, V.N., Lam, L., George, T.C., Wright, G. W., Dave, S.S., Zhao, H., Xu, W., Rosenwald, A., et al. (2008a). Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676-1679. https://doi.org/10.1126/science.1153629
  37. Lenz, G., Wright, G., Dave, S.S., Xiao, W., Powell, J., Zhao, H., Xu, W., Tan, B., Goldschmidt, N., Iqbal, J., et al. (2008b). Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313-232. https://doi.org/10.1056/NEJMoa0802885
  38. Lim, K.H., Yang, Y., and Staudt, L.M. (2012). Pathogenetic importance and therapeutic implications of NF-$\kappa{B}$in lymphoid malignancies. Immunol. Rev. 246, 359-378. https://doi.org/10.1111/j.1600-065X.2012.01105.x
  39. Luedde, T., Beraza, N., Kotsikoris, V., van Loo, G., Nenci, A., De Vos, R., Roskams, T., Trautwein, C., and Pasparakis, M. (2007). Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119-132. https://doi.org/10.1016/j.ccr.2006.12.016
  40. Maeda, S., Kamata, H., Luo, J.L., Leffert, H., and Karin, M. (2005). IKK couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977-990. https://doi.org/10.1016/j.cell.2005.04.014
  41. Martin, A.G., Trama, J., Crighton, D., Ryan, K.M., and Fearnhead, H.O. (2009). Activation of p73 and induction of Noxa by DNA damage requires NF-kappa B. Aging 1, 335-349. https://doi.org/10.18632/aging.100026
  42. Neri, A., Chang, C.C., Lombardi, L., Salina, M., Corradini, P., Maiolo, AT., Chaganti, R.S., and Dalla-Favera, R. (1991). B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-$\kappa{B}$p50. Cell 67, 1075-1087. https://doi.org/10.1016/0092-8674(91)90285-7
  43. Ngo, V.N., Davis, R.E., Lamy, L., Yu, X., Zhao, H., Lenz, G., Lam, L.T., Dave, S., Yang, L., Powell, J., et al. (2006). A loss-offunction RNA interference screen for molecular targets in cancer. Nature 441, 106-110. https://doi.org/10.1038/nature04687
  44. Ngo, V.N., Young, R.M., Schmitz, R., Jhavar, S., Xiao, W., Lim, K.H., Kohlhammer, H., Xu, W., Yang, Y., Zhao, H., et al. (2011). Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115-119. https://doi.org/10.1038/nature09671
  45. Perkins, N.D. (2007). Integrating cell-signalling pathways with NFkappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49-62. https://doi.org/10.1038/nrm2083
  46. Popivanova, B.K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., Oshima, M., Fujii, C., and Mukaida, N. (2008). Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560-570.
  47. Prasad, S., Ravindran, J., and Aggarwal, B.B. (2010). NF-kappaB and cancer: how intimate is this relationship. Mol. Cell. Biochem. 336, 25-37. https://doi.org/10.1007/s11010-009-0267-2
  48. Reimann, M., Lee, S., Loddenkemper, C., Dorr, J.R., Tabor, V., Aichele, P., Stein, H., Dorken, B., Jenuwein, T., and Schmitt, C. A. (2010). Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell. 17, 262-272. https://doi.org/10.1016/j.ccr.2009.12.043
  49. Rosenwald, A., Wright, G., Chan, W.C., Connors, J.M., Campo, E., Fisher, R.I., Gascoyne, R.D., Muller-Hermelink, H.K., Smeland, E.B., Giltnane, J.M., et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 1937-1947. https://doi.org/10.1056/NEJMoa012914
  50. Rovillain, E., Mansfield, L., Caetano, C., Alvarez-Fernandez, M., Caballero, O.L., Medema, R.H., Hummerich, H., and Jat, P.S. (2011). Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 30, 2356-2366. https://doi.org/10.1038/onc.2010.611
  51. Ryan, K.M., Ernst, M.K., Rice, N.R., and Vousden, K.H. (2000). Role of NF-kappaB in p53-mediated programmed cell death. Nature 404, 892-897. https://doi.org/10.1038/35009130
  52. Schmitt, C.A. (2007). Cellular senescence and cancer treatment. Biochim. Biophys. Acta 1775, 5-20.
  53. Schmitt, C.A., Fridman, J.S., Yang, M., Lee, S., Baranov, E., Hoffman, R.M., and Lowe, S.W. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335-346. https://doi.org/10.1016/S0092-8674(02)00734-1
  54. Schneider, A., Martin-Villalba, A., Weih, F., Vogel, J., Wirth, T., and Schwaninger, M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat. Med. 5, 554-559. https://doi.org/10.1038/8432
  55. Seitz, C.S., Lin, Q., Deng, H., and Khavari, P.A. (1998). Alterations in NF-$\kappa{B}$function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-$\kappa{B}$. Proc. Natl. Acad. Sci. USA 95, 2307-2312. https://doi.org/10.1073/pnas.95.5.2307
  56. Sen, R., and Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716. https://doi.org/10.1016/0092-8674(86)90346-6
  57. Sheehy, A.M., and Schlissel, M.S. (1999). Overexpression of RelA causes G1 arrest and apoptosis in a Pro-B cell line. J. Biol. Chem. 274, 8708-8716. https://doi.org/10.1074/jbc.274.13.8708
  58. Staudt, L.M. (2010). Oncogenic activation of NF-$\kappa{B}$. Cold Spring Harb Perspect Biol. 2, a000109.
  59. Stehlik, C., de Martin. R., Kumabashiri, I., Schmid, J.A., Binder, B.R., and Lipp, J. (1998). Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J. Exp. Med. 188, 211-216. https://doi.org/10.1084/jem.188.1.211
  60. Sun, L., Deng, L., Ea, C.K., Xia, Z.P., and Chen, Z.J. (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289-301. https://doi.org/10.1016/S1097-2765(04)00236-9
  61. Tamatani, M., Che, Y.H., Matsuzaki, H., Ogawa, S., Okado, H., Miyake, S., Mizuno, T., and Tohyama, M. (1999). Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531-8538. https://doi.org/10.1074/jbc.274.13.8531
  62. te Poele, R.H., Okorokov, A.L., Jardine, L., Cummings, J., and Joel, S.P. (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876-1883.
  63. Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E.A., Rickman, B., Betz, K.S., Penz-Oesterreicher, M., Bjorkdahl, O., Fox, J.G., et al. (2008). Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408-419. https://doi.org/10.1016/j.ccr.2008.10.011
  64. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V., and Baldwin, A.S. Jr. (1998). NF-$\kappa{B}$antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680-1683. https://doi.org/10.1126/science.281.5383.1680
  65. Wertz, I.E., O'Rourke, K.M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D.L., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-$\kappa{B}$signalling. Nature 430, 694-699. https://doi.org/10.1038/nature02794
  66. Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660. https://doi.org/10.1038/nature05529
  67. Yamamoto, K., Arakawa, T., Ueda, N., and Yamamoto, S. (1995). Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J. Biol. Chem. 270, 31315-31320. https://doi.org/10.1074/jbc.270.52.31315
  68. Yang, J., Splittgerber, R., Yull, F.E., Kantrow, S., Ayers, G.D., Karin, M., and Richmond, A. (2010). Conditional ablation of Ikk$\beta$ inhibits melanoma tumor development in mice. J. Clin. Invest. 120, 2563-2574. https://doi.org/10.1172/JCI42358
  69. Zhou, H., Wertz, I., O'Rourke, K., Ultsch, M., Seshagiri, S., Eby, M., Xiao, W., and Dixit, V.M. (2004). Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427, 167-171. https://doi.org/10.1038/nature02273
  70. Zhu, L., Fukuda, S., Cordis, G., Das, D.K., and Maulik, N. (2001). Anti-apoptotic protein surviving plays a significant role in tubular morphogenesis of human coronary arteriolar endothelial cells by hypoxic preconditioning. FEBS Lett. 508, 369-374. https://doi.org/10.1016/S0014-5793(01)03084-8

Cited by

  1. Effects of probucol on cell proliferation in human ovarian cancer cells vol.5, pp.1, 2016, https://doi.org/10.1039/C5TX00088B
  2. Effect of Pomegranate Hull Extract on Liver Neoplastic Changes in Rats: More than an Antioxidant vol.68, pp.6, 2016, https://doi.org/10.1080/01635581.2016.1192205
  3. TMPRSS4 promotes invasiveness of human gastric cancer cells through activation of NF-κB/MMP-9 signaling vol.77, 2016, https://doi.org/10.1016/j.biopha.2015.11.002
  4. Immune System Dysfunction in the Elderly vol.89, pp.1, 2017, https://doi.org/10.1590/0001-3765201720160487
  5. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening vol.35, pp.8, 2017, https://doi.org/10.1002/stem.2654
  6. Farnesoid X receptor signal is involved in deoxycholic acid-induced intestinal metaplasia of normal human gastric epithelial cells vol.34, pp.5, 2015, https://doi.org/10.3892/or.2015.4207
  7. Mutant DD genotype of NFKB1 gene is associated with the susceptibility and severity of coronary artery disease vol.103, 2017, https://doi.org/10.1016/j.yjmcc.2017.01.005
  8. Translational Horizons in the Tumor Microenvironment: Harnessing Breakthroughs and Targeting Cures vol.35, pp.2, 2015, https://doi.org/10.1002/med.21338
  9. The role of NF-κB in PARP-inhibitor-mediated sensitization and detoxification of arsenic trioxide in hepatocellular carcinoma cells vol.40, pp.3, 2015, https://doi.org/10.2131/jts.40.349
  10. Induction of IκB-ζ by Epstein-Barr virus latent membrane protein-1 and CD30 vol.47, pp.6, 2015, https://doi.org/10.3892/ijo.2015.3218
  11. Metabolomics–Proteomics Combined Approach Identifies Differential Metabolism-Associated Molecular Events between Senescence and Apoptosis vol.16, pp.6, 2017, https://doi.org/10.1021/acs.jproteome.7b00111
  12. The PPARγ-SETD8 axis constitutes an epigenetic, p53-independent checkpoint on p21-mediated cellular senescence vol.16, pp.4, 2017, https://doi.org/10.1111/acel.12607
  13. Emerging prognostic markers related to mesenchymal characteristics of poorly differentiated breast cancers vol.37, pp.4, 2016, https://doi.org/10.1007/s13277-015-4361-7
  14. Investigation of nutriactive phytochemical - gamma-oryzanol in experimental animal models vol.100, pp.4, 2016, https://doi.org/10.1111/jpn.12428
  15. Cobrotoxin fromNaja naja atraVenom Ameliorates Adriamycin Nephropathy in Rats vol.2015, 2015, https://doi.org/10.1155/2015/450581
  16. Sorafenib effect on liver neoplastic changes in rats: more than a kinase inhibitor vol.17, pp.2, 2017, https://doi.org/10.1007/s10238-016-0416-3
  17. PM2.5 obtained from urban areas in Beijing induces apoptosis by activating nuclear factor-kappa B vol.4, pp.1, 2017, https://doi.org/10.1186/s40779-017-0136-3
  18. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer vol.17, pp.10, 2016, https://doi.org/10.3390/ijms17101724
  19. Upregulation of microRNA-181b inhibits CCL18-induced breast cancer cell metastasis and invasion via the NF-κB signaling pathway vol.12, pp.6, 2016, https://doi.org/10.3892/ol.2016.5230
  20. Anti-inflammatory Activity of Tocotrienols in Age-related Pathologies: A SASPected Involvement of Cellular Senescence vol.20, pp.1, 2018, https://doi.org/10.1186/s12575-018-0087-4
  21. NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses—Therapeutic Perspectives vol.10, pp.11, 2018, https://doi.org/10.3390/cancers10110426
  22. Exacerbated Apoptosis of Cells Infected with Infectious Bursal Disease Virus upon Exposure to Interferon Alpha vol.92, pp.11, 2018, https://doi.org/10.1128/JVI.00364-18
  23. NF-κB, inflammation, immunity and cancer: coming of age vol.18, pp.5, 2018, https://doi.org/10.1038/nri.2017.142
  24. Essential Roles for the Non-Canonical IκB Kinases in Linking Inflammation to Cancer, Obesity, and Diabetes vol.8, pp.2, 2019, https://doi.org/10.3390/cells8020178
  25. The BCR-ABL/NF-κB signal transduction network: a long lasting relationship in Philadelphia positive Leukemias vol.7, pp.40, 2016, https://doi.org/10.18632/oncotarget.11507
  26. Diallyl Disulfide (DADS), a Constituent of Garlic, Inactivates NF-κB and Prevents Colitis-Induced Colorectal Cancer by Inhibiting GSK-3β vol.9, pp.7, 2016, https://doi.org/10.1158/1940-6207.capr-16-0044
  27. Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation vol.8, pp.11, 2014, https://doi.org/10.18632/aging.101113
  28. Regulation of Age-related Decline by Transcription Factors and Their Crosstalk with the Epigenome vol.19, pp.6, 2014, https://doi.org/10.2174/1389202919666180503125850
  29. KLF5 promotes the tumorigenesis and metastatic potential of thyroid cancer cells through the NF-κB signaling pathway vol.40, pp.5, 2014, https://doi.org/10.3892/or.2018.6687
  30. Protective effect and molecular mechanism of liquiritin on oxybuprocaine-induced apoptosis of human corneal endothelial cells vol.15, pp.4, 2018, https://doi.org/10.3892/etm.2018.5860
  31. Senescence-related deterioration of intercellular junctions in the peritoneal mesothelium promotes the transmesothelial invasion of ovarian cancer cells vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-44123-4
  32. MicroRNA-199a-5p functions as a tumor suppressor in oral squamous cell carcinoma via targeting the IKKβ/NF-κB signaling pathway vol.43, pp.4, 2014, https://doi.org/10.3892/ijmm.2019.4083
  33. lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence vol.11, pp.17, 2014, https://doi.org/10.18632/aging.102240
  34. Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review vol.15, pp.None, 2020, https://doi.org/10.2174/1574888x15666200213105155
  35. Paeonol Suppresses Proliferation and Motility of Non-Small-Cell Lung Cancer Cells by Disrupting STAT3/NF-κB Signaling vol.11, pp.None, 2020, https://doi.org/10.3389/fphar.2020.572616
  36. Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells vol.21, pp.9, 2014, https://doi.org/10.3390/ijms21093279
  37. NFKB1 gene rs28362491 ins/del variation is associated with higher susceptibility to myocardial infarction in a Chinese Han population vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-72877-9
  38. The emerging role of cellular senescence in complications of COVID-19 vol.28, pp.None, 2014, https://doi.org/10.1016/j.ctarc.2021.100399
  39. The Repression of the HMGB1-TLR4-NF-κB Signaling Pathway by Safflower Yellow May Improve Spinal Cord Injury vol.15, pp.None, 2014, https://doi.org/10.3389/fnins.2021.803885
  40. NF-κB and Human Cancer: What Have We Learned over the Past 35 Years? vol.9, pp.8, 2014, https://doi.org/10.3390/biomedicines9080889
  41. LIM mineralization protein‑1 inhibits IL‑1β‑induced human chondrocytes injury by altering the NF‑κB and MAPK/JNK pathways vol.23, pp.1, 2014, https://doi.org/10.3892/etm.2021.10983
  42. NF‐κB signaling in inflammation and cancer vol.2, pp.4, 2014, https://doi.org/10.1002/mco2.104