DOI QR코드

DOI QR Code

Intestinal Permeability of Oyster Shell Calcium with Different Particle Sizes

패각 칼슘 입자 크기에 따른 흡수율

  • Received : 2013.11.21
  • Accepted : 2013.12.11
  • Published : 2014.03.31

Abstract

In this study, we examined the ionization rate and permeability of nanocalcium prepared from oyster shells with various particle sizes. Four particle sizes of the calcium samples were prepared by centrifugation according to their density disparity in alcoholic solution: NC (normal calcium), C-1 (supernatant of 1,000 rpm), C-2 (supernatant of 2,000 rpm), and C-3 (supernatant of 3,000 rpm). Particle sizes of NC, C-1, C-2, and C-3 were $2,280.3{\pm}64.3nm$, $521.3{\pm}83.3nm$, $313.9{\pm}29.5nm$, and $280.0{\pm}3.4nm$, respectively. C-3 showed a slight increase in ionization rate compared with the other calcium samples, but their differences were not significant. Dialysis membrane-employed analysis showed that nanocalcium permeability increased as its particle size smaller; 32% of C-3 nanocalcium was transported to the outside of the membrane, whereas C-1 showed a 25% transport rate. We determined the permeability of the nanocalciums by using rat intestinal sacs, in order to provide different intestinal environments depending on pH level. Nanocalcium generally showed a higher permeability at pH 7, which represents an ileum environments compared to the duodenum and jejunum environments at pH 4.2 and pH 6.2, respectively. However, C-3 calcium showed the highest permeability, followed by C-2, C-1 and NS calciums. This result shows that the size of calcium positively affected its permeability in the intestinal sac. Taken together, nano-sized calcium derived from discarded oyster shell shows improved permeability in intestinal environments.

본 연구에서는 패각에서 유래하는 칼슘의 이용가치를 높이고자 분쇄한 패각 칼슘을 입자 크기별로 제조하여 이온화율과 흡수율을 조사하였다. 패각 칼슘분말 현탁액을 알코올 중에서 비중차이별로 분리하고 입자 크기를 측정하여 4개의 시료군으로 나누었다; NC(일반 패각 칼슘), C-1(1,000 rpm 상등액), C-2(2,000 rpm 상등액), C-3(3,000 rpm 상등액). 이들의 입자 크기는 각각 $2,280.3{\pm}64nm$, $521.3{\pm}83.3nm$, $313.9{\pm}29.5nm$, $280{\pm}3.4nm$를 보였다. 각 칼슘군들을 대상으로 이온화 정도를 측정한 결과 C-3군이 오차범위내에서 다른 군들에 비해 이온화율이 다소 증가했다. In vitro 상에서 dialysis 막을 이용한 나노칼슘의 투과율을 측정한 결과 나노칼슘의 입자 크기가 작을수록 막 투과성이 증대됨을 확인할 수 있었다. 한편 rat의 내장주머니 막(intestinal sac)을 이용하여 장내 환경별 나노칼슘의 투과율을 측정한 결과 C-3군을 제외한 모든 군에서 십이지장(pH 4.2)과 공장(pH 6.2) 환경보다는 회장(pH 7.2)에서의 나노칼슘의 장투과율이 비교적 높게 나타난 반면 C-3군에서는 십이지장 환경에서의 투과율이 다소 높았다. 특히 십이지장 환경에서의 샘플 간 투과율을 비교할 때 C-2와 C-3군이 가장 높은 투과율을 보였고 NC 칼슘이 가장 낮은 투과율을 나타내어 입자 크기가 작을수록 장 투과율이 증가함을 확인할 수 있었다. 위의 결과를 종합해볼 때, 패각에서 유래하는 칼슘을 적절한 가공처리를 거쳐 나노칼슘으로 만들면 칼슘의 이온화율과 장내흡수율을 향상시킬 수 있는 것으로 사료된다.

Keywords

References

  1. Smith K. 1988. Calcium and trace mineral interactions. Cereal Foods World 33: 776-782.
  2. Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM. 1991. Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 325: 1189-1195. https://doi.org/10.1056/NEJM199110243251701
  3. Lee S, Chang SO. 1994. Comparison of the bioavailability of calcium from anchovy, tofu and nonfat dry milk (NFDM) in growing male rats. Korean J Nutr 27: 473-482.
  4. Lee SH, Hwangbo YS, Kim JY, Lee YS. 1997. A study on the bioavailability of dietary calcium sources. Korean J Nutr 30: 499-505.
  5. Kim JS, Choi JD, Kim DS. 1998. Preparation of calciumbased powder from fish bone and its characteristics. J Korean Soc Appl Biol Chem 42: 147-152
  6. Kang JH, Kim JH, Lee HC. 1996. A study on the development of manufacturing process of high grade precipitated calcium carbonate from oyster shell. J Korean Solid Wastes Eng Soc 13: 320-327.
  7. Park SS. 1997. A study on the manufacture, control of from and crystal size of precipitated calcium carbonate from oyster shells. J Korean Solid Wastes Eng Soc 14: 871-882.
  8. Reykdal O, Lee K. 1991. Soluble, dialyzable and ionic calcium in raw and processed skim milk, whole milk and spinach. J Food Sci 56: 864-866. https://doi.org/10.1111/j.1365-2621.1991.tb05403.x
  9. Nair AB, Kaushik A, Attimarad M, Al-Dhubiab BE. 2012. Enhanced oral bioavailability of calcium using bovine serum albumin microspheres. Drug Deliv 19: 277-285. https://doi.org/10.3109/10717544.2012.704094
  10. Yang T, Kim C, Jho J, Kim IW. 2012. Regulating fluoride uptake by calcium phosphate minerals with polymeric additives. Colloids Surf A 401: 126-136. https://doi.org/10.1016/j.colsurfa.2012.03.038
  11. Mahomoodally MF, Gurib-Fakim A, Subratty AH. 2005. Experimental evidence for in vitro fluid transport in the presence of a traditional medicinal fruit extract across rat everted intestinal sacs. Fundam Clin Pharmacol 19: 87-92. https://doi.org/10.1111/j.1472-8206.2004.00311.x
  12. Dressman JB, Amidon GL, Reppas C, Shah VP. 1998. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15: 11-22. https://doi.org/10.1023/A:1011984216775
  13. Dolinska B, Mikulska A, Caban A, Ostrozka-Cieslik A, Ryszka F. 2011. A model for calcium permeation into small intestine. Biol Trace Elem Res 142: 456-464. https://doi.org/10.1007/s12011-010-8827-6
  14. Taga MS, Miller EE, Pratt DE. 1984. Chia seeds as a source of natural lipid antioxidants. J Am Oil Chem Soc 61: 928-931. https://doi.org/10.1007/BF02542169
  15. Choi HS, Han JH, Chung S, Hong YH, Suh HJ. 2013. Nano-calcium ameliorates ovariectomy-induced bone loss in female rats. Korean J Food Sci An 33: 515-521. https://doi.org/10.5851/kosfa.2013.33.4.515
  16. Moore EW. 1970. Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes. J Clin Invest 49: 318-334. https://doi.org/10.1172/JCI106241
  17. McLean FC, Hastings AB. 1934. A biological method for the estimation of calcium ion concentration. J Biol Chem 107: 337-350.
  18. McLean FC, Hastings AB. 1935. The state of calcium in the fluids of the body: I. The conditions affecting the ionization of calcium. J Biol Chem 108: 285-321.
  19. Kerrick W, Hoar PE, Cassidy PS. 1980. Calcium-activated tension: the role of myosin light chain phosphorylation. Fed Proc 39: 1558-1563.
  20. Brewbaker JL, Kwack BH. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50: 859-865. https://doi.org/10.2307/2439772
  21. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA. 2011. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96: 53-58. https://doi.org/10.1210/jc.2010-2704
  22. Gueuen L, Pointillart A. 2000. The bioavailability of dietary calcium. J Am Coll Nutr 19: 119S-136S. https://doi.org/10.1080/07315724.2000.10718083
  23. Dawson-Hughes B, Dallal GE, Krall EA, Sadowski L, Sahyoun N, Tannenbaum S. 1990. A controlled trial of the effect of calcium supplementation on bone density in post-menopausal women. N Engl J Med 323: 878-883. https://doi.org/10.1056/NEJM199009273231305
  24. Nakashima S, Yoshie M, Sano H, Bahar A. 2009. Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. J Oral Sci 51: 69-77. https://doi.org/10.2334/josnusd.51.69

Cited by

  1. Acute/Subacute Toxicity of Nano Calcium vol.44, pp.1, 2015, https://doi.org/10.3746/jkfn.2015.44.1.029