DOI QR코드

DOI QR Code

The Application of Various Non-parametric Trend Tests to Observed and Future Rainfall Data in the Nakdong River Basin

낙동강 유역의 과거 및 미래 강우자료에 대한 다양한 비모수적 경향성 검정 기법의 적용

  • Kim, Sang Ug (Department of Civil Engineering, Kangwon National University) ;
  • Lee, Yeong Seob (Department of Civil Engineering, Kangwon National University) ;
  • Lee, Cheol-Eung (Department of Civil Engineering, Kangwon National University)
  • 김상욱 (강원대학교 공과대학 토목공학과) ;
  • 이영섭 (강원대학교 공과대학 토목공학과) ;
  • 이철응 (강원대학교 공과대학 토목공학과)
  • Received : 2013.09.13
  • Accepted : 2013.10.23
  • Published : 2014.03.31

Abstract

In recent, the various methods to predict the hydrological impacts due to climate change have been developed and applied. Especially the trend analysis using observed and future hydrological data has been performed than ever. Parametric or non-parametric tests can be applied for a trend analysis. However, the non-parametric tests have been commonly used in the case of trend analysis using hydrological data. Therefore, the two types of non-parametric tests, Mann-Kendall (MK) test and Spearman Rho (SR) test, were used to detect the trend in the observed and future rainfall data that were collected from the Nakdong River basin. Also, the Pre-Whitening (PW) and the Trend Free Pre-Whitening (TFPW) as the pre-process of the trend analysis were performed. Also, the result of trend analysis suggest that those pre-processes have a statistically significant effect. Additionally, the Sequential Mann-Kendall (SMK) was used to reveal the beginning point of a trend in the observed and future rainfall data in the Nakdong River basin. The rainfall patterns in most rainfall gauges using the observed rainfall show the increasing trend and the abrupt changes in the specific months (from April to May and September to October). Also, the beginning point of the trend is brought forward by several months when climate change is accelerated. Finally, the results of this study can provide the useful background for the research related to climate change and water resources planning in the Nakdong River basin.

최근 기후변화가 미래 수문자료에 미칠 수 있는 영향을 예측하기 위한 다양한 기법이 개발 및 적용되고 있으며, 과거 및 미래 수문자료의 경향성을 파악하고 비교하기 위한 연구가 활발히 진행되고 있다. 경향성 분석은 크게 모수적 검정과 비모수적 검정으로 구분될 수 있으나, 수문자료의 특성에 의해 비모수적 검정이 유리한 경우가 대부분이다. 본 연구에서도 낙동강 유역에서 수집된 과거 및 미래 강우량의 경향성 분석을 위해 비모수적 검정 중 MK 검정과 SR 검정을 사용하였다. 또한 본 연구에서는 경향성 분석 절차의 사전절차로 PW 기법과 TFPW 기법을 적용하고 비교함으로써, 자료의 사전처리가 최종 결과에 통계적으로 유의한 영향을 미칠수 있음을 제시하였다. 특히 SMK 기법을 적용하여 낙동강 유역의 강우자료의 경향성이 시작되는 시기를 추가로 분석하였다. 과거 강우자료의 분석결과 년총강우량은 대부분 증가하는 경향을 보였으며, 4월과 5월 그리고 9월과 10월 사이를 기점으로 강우패턴이 변화됨을 알 수 있었으며, 미래 강우자료의 분석결과 기후변화가 심해짐에 따라 경향성이 시작되는 시기가 수개월씩 빨라짐을 알 수 있었다. 이와 같은 연구결과는 향후 기후변화와 관련된 연구의 기초자료로 제공될 수 있으며, 낙동강 유역의 수자원 관리와 계획의 수립에 있어 효과적으로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Abdul Aziz, O., and Burn, D.H. (2006). "Trends and variability in the hydrological regime of the Mackenzie river basin." Journal of Hydrology, Vol. 319, No. 1-4, pp. 282-294. https://doi.org/10.1016/j.jhydrol.2005.06.039
  2. Bayazit, M., and Onoz, B. (2007). "To prewhiten or not to prewhiten in trend analysis?" Hydrological Sciences Journal, Vol. 52, No. 4, pp. 611-624. https://doi.org/10.1623/hysj.52.4.611
  3. Douglas, E.B., Vogel, R.M., and Knoll, C.N. (2000). "Trends in floods and low flows in the United States: impact of spatial correlation." Journal of Hydrology, Vol. 240, No. 1-2, pp. 90-105. https://doi.org/10.1016/S0022-1694(00)00336-X
  4. Gerstengarbe, F.W., and Werner, P.C. (1999). "Estimation of the beginning and end of recurrent events within a climate regime." Climate Research, Vol. 11, pp. 97-107. https://doi.org/10.3354/cr011097
  5. Hamed, K.H., and Rao, A.R. (1998). "A modified Mann Kendall trend test for autocorrelated data." Journal of Hydrology, Vol. 204, No. 1-4, pp. 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X
  6. Hirsch, R.M., Slack, J.R., and Smith, R.A. (1982). "Techniques of trend analysis for monthly water quality data."Water Resources Research, Vol. 18, No. 1, pp. 107-121. https://doi.org/10.1029/WR018i001p00107
  7. Hirsch, R.M., and Slack, J.R. (1984). "A nonparametric trend test for seasonal data with serial dependence." Water Resources Research, Vol. 20, No. 6, pp. 727-732. https://doi.org/10.1029/WR020i006p00727
  8. Hirsch, R.M., Alexander, R.B., and Smith, R.A. (1991). "Selection of methods for the detection and estimation of thends in water quality."Water Resources Research, Vol. 27, No. 5, pp. 803-813. https://doi.org/10.1029/91WR00259
  9. Kahya, E., and Kalayci, S. (2004). "Trend analysis of streamflow in Turkey." Journal of Hydrology, Vol. 289, No. 1-4, pp. 128-144. https://doi.org/10.1016/j.jhydrol.2003.11.006
  10. Karpouzos, D.K., Kavalieratou, S., and Babajimopoulos, C. (2010). "Trend analysis of precipitation data in Pieria region (Greece)." European Water, Vol. 30, pp. 31-40.
  11. Kendall, M.G. (1975). Rank correlation methods. Charles Griffin, London.
  12. Lee, J.H., Seo, J.W., and Kim, C.J. (2012). "Analysis on trends, periodicities and frequencies of korean drought using drought indices." Journal of Korea Water Resources Association, Vol. 45, No. 1, pp. 75-89. (In Korean) https://doi.org/10.3741/JKWRA.2012.45.1.75
  13. Lee, W.H., Hong, S.H., Kim, Y.G., and Chung, E.S. (2011). "Temporal and spatial variability of precipitation and daily average temperature in the south Korea." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 4, pp. 73-86. (In Korean) https://doi.org/10.9798/KOSHAM.2011.11.4.073
  14. Mann, H.B. (1945). "Nonparametric tests against trend." Econometrica, Vol. 33, pp. 245-259.
  15. McCuen, R.H. (2003). Modeling hydrologic change: statistical methods. CRC press company.
  16. Novotny, E.V., and Stefan, H.G. (2007). "Streamflow in Minnesota: indicator of climatic change." Journal of Hydrology, Vol. 334, No. 3-4, pp. 319-333. https://doi.org/10.1016/j.jhydrol.2006.10.011
  17. Oh, J.S., Kim, H.S., and Seo, B.H. (2006). "Trend and shift analysis for hydrologic and climate series." Journal of Korean Society of Civil Engineers, Vol. 26, No. 4B, pp. 355-362. (In Korean)
  18. Partal, T., and Kahya, E. (2006). "Trend analysis in Turkish precipitation data." Hydrological Processes, Vol. 20, pp. 2011-2026. https://doi.org/10.1002/hyp.5993
  19. Salas, J.D., Delleur, J.W., Yevjevich, V., and Lane, W.L. (1980). Applied modelling of hydrologic time series. Water Resources Publications: Littleton, USA.
  20. Seo, L., Choi, M.H., and Kim, T.W. (2010). "Outlook for temporal variation of trend embedded in extreme rainfall time series." Journal of Korean Wetlands Society, Vol. 12, No. 2, pp. 13-23. (In Korean)
  21. Sen, P.K. (1968). "Estimates of the regression coefficient based on kendall's tau." Journal of the American Statistical Association, Vol. 63, pp. 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
  22. Shon, T.S., and Shin, H.S. (2010). "Analysis for precipitation trend and elasticity of precipitation streamflow according to climate changes." Journal of Korean Society of Civil Engineers, Vol. 30, No. 5B, pp. 497-507. (In Korean)
  23. Sneyers, R. (1990). On the statistical analysis of series of observations. World Meteorological Organization, Technical Note 143, Geneva, Switzerland.
  24. Spearman, C. (1906). "The proof and measurement of association between two things." American Journal of Psychology, Vol. 15, No. 1, pp. 72-101.
  25. van Belle, G., and Hughes, J.P. (1984). "Nonparametric tests for trend in water quality." Water Resources Research, Vol. 20, No. 1, pp. 127-136. https://doi.org/10.1029/WR020i001p00127
  26. von Storch, H. (1995). Misuses of statistical analysis in climate research. In Analysis of climate variability: applications of statistical techniques, von Storch, H., Navarra, A. (Ed), Springer-Verlag, Berlin, Germany, pp. 11-26.
  27. Xu, Z.X., Takeuchi, K., and Ishidaira, H. (2003). "Monotonic trend and step changes in Japanese precipitation." Journal of Hydrology, Vol. 279, No. 1-4, pp. 144-150. https://doi.org/10.1016/S0022-1694(03)00178-1
  28. Yang, Y., and Tian, F. (2009). "Abrupt change of runoff and its major driving factors in Haihe river catchment, china." Journal of Hydrology, Vol. 374, No. 3-4, pp. 373-383. https://doi.org/10.1016/j.jhydrol.2009.06.040
  29. Yu, Y.-S., Zou, S., and Whittmore, D. (1993). "Nonparametric trend analysis of water quality data of rivers in Kansas." Journal of Hydrology, Vol, 150, No. 1, pp. 61-80. https://doi.org/10.1016/0022-1694(93)90156-4
  30. Yue, S., Pilon, P., and Cavadias, G. (2002a). "Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series." Journal of Hydrology, Vol. 259, No. 1-4, pp. 254-271. https://doi.org/10.1016/S0022-1694(01)00594-7
  31. Yue, S., Pilon, P., Phinney, B., and Cavadias, G. (2002b). "The influence of autocorrelation on the ability to detect trend in hydrological series." Hydrological Processes, Vol. 16, No. 9, pp. 1807-1829. https://doi.org/10.1002/hyp.1095
  32. Zhang, X., Harvey, K.D., Hogg, W.D., and Yuzyk, T.R. (2001). "Trends in Canadian streamflow." Water Resources Research, Vol. 37, No. 4, pp. 987-998. https://doi.org/10.1029/2000WR900357

Cited by

  1. Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.059