DOI QR코드

DOI QR Code

Antibacterial effect of self-etching adhesive systems on Streptococcus mutans

  • Kim, Seung-Ryong (Department of Conservative Dentistry, Dankook University College of Dentistry and Institute of Dental Science) ;
  • Shin, Dong-Hoon (Department of Conservative Dentistry, Dankook University College of Dentistry and Institute of Dental Science)
  • 투고 : 2013.10.31
  • 심사 : 2013.12.10
  • 발행 : 2014.02.28

초록

Objectives: In this study, we evaluated the antibacterial activity of self-etching adhesive systems against Streptococcus mutans using the agar diffusion method. Materials and Methods: Three 2-step systems, Clearfil SE Bond (SE, Kuraray), Contax (CT, DMG), and Unifil Bond (UnB, GC), and three 1-step systems, Easy Bond (EB, 3M ESPE), U-Bond (UB, Vericom), and All Bond SE (AB, BISCO) were used. 0.12% chlorhexidine (CHX, Bukwang) and 37% phosphoric acid gel (PA, Vericom) were used as positive controls. Results: The antibacterial activity of CHX and PA was stronger than that of the other groups, except SE. After light activation, the inhibition zone was reduced in the case of all 2-step systems except CT. However, all 1-step systems did not exhibit any inhibition zone upon the light activation. Conclusions: SE may be better than CT or UnB among the 2-step systems with respect to antibacterial activity, however, 1-step systems do not exhibit any antibacterial activity after light curing.

키워드

참고문헌

  1. Palotie U, Vehkalahti MM. Reasons for replacement of restorations: dentists' perceptions. Act Odontol Scand 2012;70:485-490. https://doi.org/10.3109/00016357.2011.640274
  2. Hahn P, Weyen G, Fischer P, Plogmann S, Hannig M. Marginal and internal adaptation of composite restorations to dentin in vivo and in vitro. Am J Dent 2008;21:356-360.
  3. Lee MA, Seo DK, Son HH, Cho BH. Influence of rebonding procedures on microleakage of composite resin restorations. J Korean Acad Conserv Dent 2010;35: 164-172. https://doi.org/10.5395/JKACD.2010.35.3.164
  4. Kidd EA, Joyston-Bechal S, Beighton D. Microbiological validation of assessments of caries activity during cavity preparation. Caries Res 1993;27:402-408. https://doi.org/10.1159/000261571
  5. Yip HK, Stevenson AG, Beeley JA. The specificity of caries detector dyes in cavity preparation. Br Dent J 1994;176:417-421. https://doi.org/10.1038/sj.bdj.4808470
  6. Brännström M, Nordenvall KJ. Bacterial penetration, pulpal reaction and the inner surface of Concise enamel bond. Composite fillings in etched and unetched cavities. J Dent Res 1978;57:3-10. https://doi.org/10.1177/00220345780570011301
  7. Ricketts DN, Kidd EA, Beighton D. Operative and microbiological validation of visual, radiographic and electronic diagnosis of occlusal caries in non-cavitated teeth judged to be in need of operative care. Br Dent J 1995;179:214-220. https://doi.org/10.1038/sj.bdj.4808874
  8. Kim JS, Shin DH. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor Dent Endod 2013;38: 36-42. https://doi.org/10.5395/rde.2013.38.1.36
  9. Imazato S, Kinomoto Y, Tarumi H, Torii M, Russell RR, McCabe JF. Incorporation of antibacterial monomer MDPB into dentin primer. J Dent Res 1997;76:768-772. https://doi.org/10.1177/00220345970760030901
  10. Settembrini L, Boylan R, Strassler H, Scherer W. A comparison of antimicrobial activity of etchants used for a total etch technique. Oper Dent 1997;22:84-88.
  11. Imazato S, Torii Y, Takatsuka T, Inoue K, Ebi N, Ebisu S. Bactericidal effect of dentin primer containing antibacterial monomer methacryloyloxydodecylpyridini um bromide (MDPB) against bacteria in human carious dentin. J Oral Rehabil 2001;28:314-319. https://doi.org/10.1046/j.1365-2842.2001.00659.x
  12. Imazato S, Kuramoto A, Takahashi Y, Ebisu S, Peters MC. In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent Mater 2006;22:527-532. https://doi.org/10.1016/j.dental.2005.05.009
  13. Karanika-Kouma A, Dionysopoulos P, Koliniotou-Koubia E, Kolokotronis A. Antibacterial properties of dentin bonding systems, polyacid-modified composite resins and composite resins. J Oral Rehabil 2001;28:157-160. https://doi.org/10.1046/j.1365-2842.2001.00643.x
  14. Peris AR, Mitsui FH, Lobo MM, Bedran-russo AK, Marchi GM. Adhesive systems and secondary caries formation: assessment of dentin bond strength, caries lesions depth and fluoride release. Dent Mater 2007;23:308-316. https://doi.org/10.1016/j.dental.2006.02.001
  15. Kim S, Song M, Roh BD, Park SH, Park JW. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid. Restor Dent Endod 2013; 38:65-72. https://doi.org/10.5395/rde.2013.38.2.65
  16. Walter R, Duarte WR, Pereira PN, Heymann HO, Swift EJ Jr, Arnold RR. In vitro inhibition of bacterial growth using different dental adhesive systems. Oper Dent 2007;32:388-393. https://doi.org/10.2341/06-115
  17. Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 2003;19:449-457. https://doi.org/10.1016/S0109-5641(02)00102-1
  18. Ohmori K, Maeda N, Kohno A. Evaluation of antibacterial activity of three dentin primers using an in vitro tooth model. Oper Dent 1999;24:279-285.
  19. Gondim JO, Duque C, Hebling J, Giro EM. Influence of human dentine on the antibacterial activity of selfetching adhesive systems against cariogenic bacteria. J Dent 2008;36:241-248. https://doi.org/10.1016/j.jdent.2007.12.007
  20. Tobias RS. Antibacterial properties of dental restorative materials: a review. Int Endod J 1988;21:155-160.
  21. Abdulkader A, Duguid R, Saunders EM. The antimicrobial activity of endodontic sealers to anaerobic bacteria. Int Endod J 1996;29:280-283. https://doi.org/10.1111/j.1365-2591.1996.tb01382.x
  22. Siqueira JF Jr, Favieri A, Gahyva SM, Moraes SR, Lima KC, Lopes HP. Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod 2000; 26:274-277. https://doi.org/10.1097/00004770-200005000-00005
  23. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986;50:353-380.
  24. Hamada S, Koga T, Ooshima T. Virulence factors of Streptococcus mutans and dental caries prevention. J Dent Res 1984;63:407-411. https://doi.org/10.1177/00220345840630031001
  25. Fitzgerald RJ, Keyes PH. Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc 1960;61:9-19. https://doi.org/10.14219/jada.archive.1960.0138
  26. Bender GR, Thibodeau EA, Marquis RE. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin. J Dent Res 1985;64:90-95. https://doi.org/10.1177/00220345850640021701
  27. Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology 2008; 154:3247-3255. https://doi.org/10.1099/mic.0.2008/023770-0
  28. Banas JA. Virulence properties of Streptococcus mutans. Front Biosci 2004;9:1267-1277. https://doi.org/10.2741/1305
  29. Bapna MS, Mukherjee S, Murphy R. The antimicrobial effect of an iron-binding agent on Streptococcus mutans. J Oral Rehabil 1992;19:111-113. https://doi.org/10.1111/j.1365-2842.1992.tb01087.x
  30. Kudou Y, Obara K, Kawashima T, Kubota M, Abe S, Endo T, Komatsu M, Okuda R. Addition of antibacterial agents to MMA-TBB dentin bonding systems-influences on tensile bond strength and antibacterial effect. Dent Mater J 2000;19:65-74. https://doi.org/10.4012/dmj.19.65
  31. Feuerstein O, Matalon S, Slutzky H, Weiss EI. Antibacterial properties of self-etching dental adhesive systems. J Am Dent Assoc 2007;138:349-354. https://doi.org/10.14219/jada.archive.2007.0167
  32. Schmalz G, Ergücü Z, Hiller KA. Effect of dentin on the antibacterial activity of dentin bonding agents. J Endod 2004;30:352-358. https://doi.org/10.1097/00004770-200405000-00011
  33. Imazato S, Kuramoto A, Kaneko T, Ebisu S, Russell RR. Comparison of antibacterial activity of simplified adhesive systems. Am J Dent 2002;15:356-360.
  34. Cadenaro M, Antoniolli F, Sauro S, Tay FR, Di Lenarda R, Prati C, Biasotto M, Contardo L, Breschi L. Degree of conversion and permeability of dental adhesives. Eur J Oral Sci 2005;113:525-530. https://doi.org/10.1111/j.1600-0722.2005.00251.x
  35. Finger WJ, Lee KS, Podszun W. Monomers with low oxygen inhibition as enamel/dentin adhesives. Dent Mater 1996;12:256-261. https://doi.org/10.1016/S0109-5641(96)80032-7

피인용 문헌

  1. Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin vol.10, pp.2, 2017, https://doi.org/10.3390/ma10020183
  2. Functional Dental Restorative Materials That Hinder Oral Biofilm vol.4, pp.1, 2017, https://doi.org/10.1007/s40496-017-0119-1
  3. Influence of Protease Inhibitors on Bond Degradation of Self-Etch Adhesive Systems to Caries-Affected Dentin: An <i>in Vitro</i> Study vol.08, pp.01, 2018, https://doi.org/10.4236/abc.2018.81002
  4. In vitroantibacterial activity of various adhesive materials against oral streptococci vol.30, pp.1, 2014, https://doi.org/10.1080/13102818.2015.1090296
  5. An In vitro Assessment of Antibacterial Activity of Three Self-etching Primers Against Oral Microflora vol.7, pp.4, 2014, https://doi.org/10.4103/apos.apos_11_17
  6. Antibacterial and Bonding Properties of Universal Adhesive Dental Polymers Doped with Pyrogallol vol.13, pp.10, 2014, https://doi.org/10.3390/polym13101538