DOI QR코드

DOI QR Code

COMMON FIXED POINT OF SINGLE AND MULTIVALUED MAPS SATISFYING WEAKLY COMMUTING IN IFMS

  • Park, Jong Seo (Department of Mathematics Education and Institute of Mathematics Education, Chinju National University of Education)
  • Received : 2013.12.23
  • Accepted : 2014.02.02
  • Published : 2014.03.25

Abstract

In this paper, we obtain some common fixed point theorems of single and multivalued maps under hybrid contractive conditions satisfying weakly commuting in IFMS. Our results extend previous ones in IFMS.

Keywords

References

  1. Aamri, A, Moutawkil, D. E., Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270(1), (2002), 181-188. https://doi.org/10.1016/S0022-247X(02)00059-8
  2. Deng, Z. K., Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95. https://doi.org/10.1016/0022-247X(82)90255-4
  3. Grabiec, M., Fixed point in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  4. Jungck, G., Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), 771-779. https://doi.org/10.1155/S0161171286000935
  5. Kaleva, O., Seikkala, S., On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
  6. Kubiaczyk, I, Sharma, S., Common coincidence point in fuzzy metric spaces, J. Fuzzy Math. 11(1) (2003), 1-5.
  7. Sing, B, Chauhan, M. S., Common fixed points of compatible maps in Fuzzy metric spaces, Fuzzy Sets and Systems 115(3) (2000), 471-475. https://doi.org/10.1016/S0165-0114(98)00099-2
  8. Singh, S. L., Mishra, S. N., Coincidences and fixed points of nonself hybrid contractions, J. Math. Anal. Appl. 256(2) (2001), 486-497. https://doi.org/10.1006/jmaa.2000.7301
  9. Park, J.H., Park, J.S., Kwun, Y.C., A common fixed point theorem in the intuitionistic fuzzy metric space, Advances in Natural Comput. Data Mining (Proc. 2nd ICNC and 3rd FSKD), (2006), 293-300.
  10. Park, J.S., Some fixed point theorem using common property(E.A.) in intuitionistic fuzzy metric space, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18(3) (2011), 255-260. https://doi.org/10.7468/jksmeb.2011.18.3.255
  11. Park, J.S., Park, J.H., Kwun, Y.C., On some results for five mappings using compatibility of type(${\alpha}$) in intuitionistic fuzzy metric space, International J. Fuzzy Logic Intelligent Systems 8(4) (2008), 299-305. https://doi.org/10.5391/IJFIS.2008.8.4.299
  12. Vijayaraju, P., Sajath, Z. M. I., Common fixed points of single and multivalued maps in fuzzy metric spaces, Appl. Math. 2 (2011), 595-599. https://doi.org/10.4236/am.2011.25079
  13. Schweizer, B., Sklar, A., Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334.