DOI QR코드

DOI QR Code

Analysis of the Effects by Multi-Stacking of Superstrates on Circular-Polarized Patch Antenna

원형편파 패치안테나에서 상부덮개의 다중 적층에 의한 효과 분석

  • Lee, Sangrok (Department of Electronic Communication, Shinheung College University)
  • 이상록 (신흥대학교 전자통신과)
  • Received : 2014.01.06
  • Published : 2014.03.25

Abstract

In this paper, we analyzed the effects by multi-stacking superstrates over the circular-polarized patch antenna. The previous works considered a single-layered superstrate or a superstrate with multiple layers, and did not almost consider the axial ratio at the performance analysis. First, the effect of center frequency shift is analyzed by the variation of air-gap height between patch antenna and superstrate. The center frequency is down-shifted at the smaller air-gap height and has almost the same frequency as patch antenna at the air-gap height of $005{\lambda}_0$. Second, the antenna performance is analyzed by multi-stacking superstrates with the air-gap height of $005{\lambda}_0$. As the number of multi-stacked superstrates increase, antenna gain has a linear increase and axial ratio is exponentially deteriorated. In addition, it has also been observed that the antenna performance has the same trend with the number of multi-stacked superstrates as the thickness of superstrate increases. Finally, we confirmed that it is possible to design the CP patch antenna with the scalable gain and less than 3dB axial ratio by stacking the superstrate.

본 논문에서는 원형편파 패치안테나에 상부덮개를 여러 층으로 적층함으로써 안테나 성능에 미치는 영향을 분석하였다. 지금까지 원형편파 패치안테나를 설계하기 위해서는 주로 단층의 상부덮개를 적용하거나, 여러 층으로 구성된 하나의 상부덮개를 적용하였고, 성능 분석시 안테나 축비를 거의 고려하지 않았다. 먼저, 상부덮개와 패치안테나 간의 공기층 높이에 의한 중심주파수의 변화를 분석하였다. 공기층 높이가 적을 때는 중심주파수가 낮은 쪽으로 천이하였고, $005{\lambda}_0$의 공기층 높이에서는 주파수 천이가 거의 없었다. 다음은 최적의 공기층 높이를 적용하여 상부덮개의 층수를 증가하면서 안테나 성능을 분석하였다. 상부덮개의 층수가 증가하면서 안테나 이득은 비례적으로 증가하지만, 안테나 축비는 점차적으로 악화되었다. 또한, 상부덮개의 유전체 두께가 증가할수록 안테나 이득은 증가하지만 안테나 축비는 급격히 악화되었다. 결과적으로 안테나 축비를 3dB 이내로 유지하면서 상부덮개의 층수를 확장하여 다양한 이득을 얻을 수 있는 안테나 설계가 가능함을 확인하였다.

Keywords

References

  1. S. Chaimool, K. L. Chung, and P. Akkaraekthalin, "Bandwidth and Gain Enhancement of Microstrip Patch Antennas Using Reflective Metasurface," IEICE Transactions on Communications, Vol.E93-B, No.10, pp.2496-2503, Oct. 2010. https://doi.org/10.1587/transcom.E93.B.2496
  2. Chang-Bok Joo, "Directivity Gain Improvement Method for UWB Coplanar Patch Antenna," Journal of The Institute of Electronics Engineers of Korea, Vol.49, No.6, pp.63-70, Jun. 2012.
  3. Junho Yeo and Dongho Kim, "EBG Resonator Antenna with a Stripline Type FSS Superstrate for PCS-band Base Station Antennas," Journal of The Institute of Electronics Engineers of Korea, pp.15-27, Vol.45, No.8, Aug. 2008.
  4. Y.J. Chong, J.Y. Hong, D.H. Kim, J.H. Ju, W.J. Lee, J.I.Choi, "Metamaterials Technologies Applied for Antenna and RF Devices in Microwave," ETRI Electronics and Telecommunications Trends, Vol.25, No.2, Apr. 2010.
  5. D. R. Jackson and N. G. Alexopoulos, "Gain Enhancement Methods for Printed-Circuit Antennas," IEEE Trans. Antennas Propag., Vol.33, No.9, pp.976-987, Sep. 1985. https://doi.org/10.1109/TAP.1985.1143709
  6. O. M. Ramahi and Y. T. Lo, "Superstrate Effect on the Resonant Frequency of Microstrip Antennas," Microwave and Optical Technology Letters, Vol.5, No.6, pp.254-257, Jun. 1992. https://doi.org/10.1002/mop.4650050603
  7. A. Foroozesh and L. Shafai, "Investigation into the Effects of the Patch-type FSS Superstrate on the High-Gain Cavity Resonance Antenna Design," IEEE Trans. Antennas Propag., Vol58., No.2, pp.258-270, Feb. 2010. https://doi.org/10.1109/TAP.2009.2037702
  8. H. Attia, L. Yousefi, and O. M. Ramahi, "Analytical Model for Calculating the Radiadion Field of Microstrip Antennas with Artificial Magnetic Superstrates: Theory and Experiment," IEEE Trans. Antennas Propag., Vol.59, No.5, pp.1438-1445, May 2011. https://doi.org/10.1109/TAP.2011.2122295
  9. T. N. Chang, M. C. Wu, and J.-M. Lin, "Gain Enhancement for Circularly Polarized Microstrip Patch Antenna," Progress In Electromagnetics Research B, Vol. 17, pp.275-292, 2009. https://doi.org/10.2528/PIERB09081008
  10. K. Chen, K. Lin, and H. Su, "Microstrip Antenna Gain Enhancement by Metamaterial Radome with More Subwavelengh Holes," Microwave Conference & APMC 2009, pp.790-792, Dec. 2009.
  11. C. Kim, K. H. Lee, S. Lee, K. T. Kim, and Y. K. Yoon, "A Surface Micromachined High Directivity GPS Patch Antenna with a Four-leaf Clover Shape Metamaterial Slab," 62nd Electronic Components & Technology Conference 2012, pp.942-947, June 2012.
  12. ROGERS Corp., "RT/duroid 6006/6010M High Frequency Laminates," 2011.