DOI QR코드

DOI QR Code

A Study on the Deperm Protocols Considering Demagnetizing Field of a Ferromagnetic Material

  • Ju, Hye Sun (Department of Electrical Engineering, Pusan National University) ;
  • Won, Hyuk (Korea Marine Equipment Research Institute) ;
  • Chung, Hyun Ju (The 6th R&D Institute-3, Agency for Defense Development) ;
  • Park, Gwan Soo (Department of Electrical Engineering, Pusan National University)
  • Received : 2013.09.23
  • Accepted : 2014.03.14
  • Published : 2014.03.31

Abstract

Magnetic materials with large coercive force and high squareness ratio are currently developing to meet an industrial demand. Since a ferromagnetic material has hysteresis characteristics, it is hard to demagnetize a ferromagnetic material precisely. In this paper, we describe deperm processes and conduct an analysis of residual magnetization of ferromagnetic material using the Preisach modeling with a two-dimensional finite elements method (FEM). From the results, it was shown that an exponential decrement form of deperm protocol is more efficient than a linear decrement form because of the demagnetizing field in the ferromagnetic material.

Keywords

References

  1. S. S. Udpa, Y. S. Sun, and W. Load, IEEE Trans. Magn. 24, 226 (1988). https://doi.org/10.1109/20.43898
  2. A. V. Kildishev and J. A. Nyenhuis, IEEE Trans. Magn. 35, 3907(1999). https://doi.org/10.1109/20.800704
  3. T. M. Baynes, Analysis of the demagnetization process and possible alternative magnetic treatments for naval vessels, Ph.D. Thesis, The University of New South Wales (2002).
  4. T. M. Baynes, G. J. Russell, and A. Bailey, IEEE Trans. Magn. 38, 1753 (2002). https://doi.org/10.1109/TMAG.2002.1017767
  5. David Jiles, Introduction to Magnetism and Magnetic Materials, Taylor & Francis, London (1998) pp. 146-147.
  6. M. Enokizono, T. Todaka, and M. Kumoi, J. Magn. Magn. Mater. 112, 207 (1992). https://doi.org/10.1016/0304-8853(92)91154-L
  7. B. D. Cullity, Introduction to Magnetic Materials, Wiley (2009) pp. 326-329.
  8. R. F. Soohoo, J. Appl. Phys. 55, 15 (1984). https://doi.org/10.1063/1.332880
  9. A. Barman and R. C. Sharma, J. Appl. Phys. 102 (2007).
  10. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Royal. Soc. A240, 599 (1948).
  11. G. Friedman, J. Appl. Phys. 67, 5361 (1990). https://doi.org/10.1063/1.344611
  12. L. Dupre, R. V. Kerr, and J. Melkebeek, J. Appl. Phys. 89, 7245 (2001). https://doi.org/10.1063/1.1357132
  13. M. Pardavi-Horvath, J. Oti, G. Vertesy, L. H. Bennett, and L. J. Swartzendruber, J. Magn. Magn. Mater. 104, 313 (1992).
  14. H. Won, H. S. Ju, S. Park, and G. S. Park, IEEE Trans. Magn. 49, 2045 (2013). https://doi.org/10.1109/TMAG.2013.2245635
  15. H. Won, Numerical Modeling of Hysteresis Phenomenon Based on the Mechanism of Magnetic Structures, Ph.D. Thesis, Pusan National University (2010).
  16. H. M. J. Boots and K. M. Schep, IEEE Trans. Magn. 36, 3900 (2000). https://doi.org/10.1109/20.914338
  17. H. M. J. Boots, L. Sander, and K. M. Schep. Physica B 275, 168 (2000). https://doi.org/10.1016/S0921-4526(99)00746-2

Cited by

  1. Efficient Deperming Protocols Based on the Magnetic Properties in Demagnetization Process vol.51, pp.11, 2015, https://doi.org/10.1109/TMAG.2015.2436703
  2. Demagnetization Scheme for Avoiding Magnetic Mines Under the Exposure of Earth Magnetic Field vol.54, pp.3, 2018, https://doi.org/10.1109/TMAG.2017.2764531