DOI QR코드

DOI QR Code

정량적 도전율측정의 오차와 $B_1{^+}$ map의 노이즈에 관한 분석

Quantitative Conductivity Estimation Error due to Statistical Noise in Complex $B_1{^+}$ Map

  • 신재욱 (연세대학교 전기전자공학) ;
  • 이준성 (연세대학교 뇌심혈관질환융합연구사업단) ;
  • 김민오 (연세대학교 전기전자공학) ;
  • 최나래 (연세대학교 전기전자공학) ;
  • 서진근 (연세대학교 계산과학공학) ;
  • 김동현 (연세대학교 전기전자공학)
  • Shin, Jaewook (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Joonsung (SIRIC, Yonsei University) ;
  • Kim, Min-Oh (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Choi, Narae (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Seo, Jin Keun (Department of Computer Science & Engineering, Yonsei University) ;
  • Kim, Dong-Hyun (Department of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2014.08.19
  • 심사 : 2014.10.02
  • 발행 : 2014.12.31

초록

목적: 자기공명 영상장치(MRI)의 송신 자기장 정보를 이용한 인체 내 도전율을 측정하는 기술이 최근 제안되었다. 송신 자기장 정보의 노이즈에 따른 도전율의 오차를 측정하고 도전율과 노이즈의 관계를 모델화 하였다. 대상과 방법: 송신 자기장의 분포는 원형 모델에 대해서 시뮬레이션을 수행하였다. 시뮬레이션으로 생성된 송신 자기장의 분포에 가우시안 노이즈를 더해준 후 정량적인 도전율 측정에 어떤 영향을 주는지 공명 주파수, 물체의 크기, 송신 자기장의 신호 대 잡음 비에 대해서 수행하였다. 각 각의 변수에 따른 도전율 대 잡음 비를 측정하여 모델화 하였다. 결과: 시뮬레이션 결과 도전율 측정은 송신 주파수의 크기 오차보다 위상 오차에 더 큰 영향을 받는 것을 보였다. 또한, 송신 자기장의 신호 대 잡음 비, 공명 주파수, 도전율 값, 평균필터의 크기에 따라서 도전율 대 잡음비가 비례하는 경향성을 보였다. 하지만, 물체를 둘러싼 외부 물질의 크기는 도전율 측정에 큰 영향을 주지 않았다. 위의 시뮬레이션 결과는 3T 임상용 MRI에서 원형 모델 팬텀에 대해서 검증되었다. 결론: 시뮬레이션을 통해 얻어진 변수와 도전율 측정의 오차와의 관계를 통해서 정량적인 도전율 측정에서 발생되는 오차를 모델화 할 수 있었다. 또한 제시된 분석 방법을 통하여 자기공명 영상 장치를 이용한 도전율 측정의 필터링 및 재구성 알고리즘의 효과를 검증 할 수 있을 것으로 보인다.

Purpose : In-vivo conductivity reconstruction using transmit field ($B_1{^+}$) information of MRI was proposed. We assessed the accuracy of conductivity reconstruction in the presence of statistical noise in complex $B_1{^+}$ map and provided a parametric model of the conductivity-to-noise ratio value. Materials and Methods: The $B_1{^+}$ distribution was simulated for a cylindrical phantom model. By adding complex Gaussian noise to the simulated $B_1{^+}$ map, quantitative conductivity estimation error was evaluated. The quantitative evaluation process was repeated over several different parameters such as Larmor frequency, object radius and SNR of $B_1{^+}$ map. A parametric model for the conductivity-to-noise ratio was developed according to these various parameters. Results: According to the simulation results, conductivity estimation is more sensitive to statistical noise in $B_1{^+}$ phase than to noise in $B_1{^+}$ magnitude. The conductivity estimate of the object of interest does not depend on the external object surrounding it. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the $B_1{^+}$ map, Larmor frequency, the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targeted tissue, SNR of $B_1{^+}$ map and adequate filtering size have to be taken into account for conductivity reconstruction process. In addition, the simulation result was verified at 3T conventional MRI scanner. Conclusion: Through all these relationships, quantitative conductivity estimation error due to statistical noise in $B_1{^+}$ map is modeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.

키워드

참고문헌

  1. Haacke EM, Petropoulos LS, Nilges EW, Wu DH. Extraction of conductivity and permittivity using magnetic resonance imaging. Phys Med Biol 1991;36:723-734 https://doi.org/10.1088/0031-9155/36/6/002
  2. Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 2009;28:1365-1374 https://doi.org/10.1109/TMI.2009.2015757
  3. Joines WT, Zhang Y, Li C, Jirtle RL. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys 1994;21:547-550 https://doi.org/10.1118/1.597312
  4. Schaefer M, Gross W, Ackemann J, Gebhard MM. The complex dielectric spectrum of heart tissue during ischemia. Bioelectro- chemistry 2002;58:171-180 https://doi.org/10.1016/S1567-5394(02)00152-4
  5. Haemmerich D, Staelin ST, Tsai JZ, Tungjitkusolmun S, Mahvi DM, Webster JG. In vivo electrical conductivity of hepatic tumours. Physiol Meas 2003;24:251-260 https://doi.org/10.1088/0967-3334/24/2/302
  6. Fallert MA, Mirotznik MS, Downing SW, et al. Myocardial electrical-impedance mapping of iscemic sheep hearts and healing aneurysm. Circulation 1993;87:199-207 https://doi.org/10.1161/01.CIR.87.1.199
  7. Voigt T, Homann H, Katscher U, Doessel O. Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 2012;68:1117-1126 https://doi.org/10.1002/mrm.23322
  8. Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57: 192-200 https://doi.org/10.1002/mrm.21120
  9. Voigt T, Nehrke K, Doessel O, Katscher U. T1 corrected B1 mapping using multi-TR gradient echo sequences. Magn Reson Med 2010;64:725-733 https://doi.org/10.1002/mrm.22333
  10. Stollberger R, Wach P. Imaging of the active B1 field in vivo. Magn Reson Med 1996;35:246-251 https://doi.org/10.1002/mrm.1910350217
  11. Sacolick LI, Wiesinger F, Hancu I, Vogel MW. B1 mapping by Bloch-Siegert shift. Magn Reson Med 2010;63:1315-1322 https://doi.org/10.1002/mrm.22357
  12. Kim DH, Gho SM, Choi N, Liu C. Simultaneous Electromagnetic Property Imaging using multiecho gradient echo. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012 p 3464
  13. Voigt T, Katscher U, Doessel O. Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography. Magn Reson Med 2011;66:456-466 https://doi.org/10.1002/mrm.22832
  14. Bulumulla SB, Lee S, Yeo DTB. Conductivity and permittivity imaging at 3.0 T. Concept Magn Reson B 2012;41B(1):13-21 https://doi.org/10.1002/cmr.b.21204
  15. van Lier AL, Brunner DO, Pruessmann KP, et al. B1(+) phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn Reson Med 2012;67:552-561 https://doi.org/10.1002/mrm.22995
  16. Seo JK, Kim MO, Lee J, et al. Error analysis of nonconstant admittivity for MR-based electric property imaging. IEEE Trans Med Imaging 2012;31:430-437 https://doi.org/10.1109/TMI.2011.2171000
  17. van Lier AL, Voigt T, Katscher U, van den Berg CA. Comparing Electric Properties Tomography at 1.5, 3 and 7 T. In: Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Canada, 2011 p 125
  18. van den Bergen B, Stolk CC, Berg JB, Lagendijk JJ, Van den Berg CA. Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI. Phys Med Biol 2009;54:1253-1264 https://doi.org/10.1088/0031-9155/54/5/010
  19. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914 https://doi.org/10.1002/mrm.1910340618
  20. Morrell GR, Schabel MC. An analysis of the accuracy of magnetic resonance flip angle measurement methods. Phys Med Biol 2010;55:6157-6174 https://doi.org/10.1088/0031-9155/55/20/008
  21. http://niremf.ifac.cnr.it/tissprop/
  22. Stogryn A. Equations for calculating the dielectric constant of saline water. IEEE Trans Microwave Theory Tech 1971;19:733- 736 https://doi.org/10.1109/TMTT.1971.1127617
  23. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 1996;41:2251-2269 https://doi.org/10.1088/0031-9155/41/11/002
  24. Zypman FR. MRI electromagnetic field penetration in cylindrical objects. Comput Biol Med 1996;26:161-175 https://doi.org/10.1016/0010-4825(95)00037-2

피인용 문헌

  1. Error analysis of helmholtz‐based MR‐electrical properties tomography vol.80, pp.1, 2014, https://doi.org/10.1002/mrm.27004
  2. Redesign of the Laplacian kernel for improvements in conductivity imaging using MRI vol.81, pp.3, 2014, https://doi.org/10.1002/mrm.27528