DOI QR코드

DOI QR Code

'한아름'의 Gibberellin 처리에 따른 생육기별 해부학적 구조와 과실품질

Anatomical Structure and Fruit Quality According to the Fruit Developmental Stage as Affected by Gibberellins Treatments in Pyrus pyrifolia Nakai cv. Hanareum

  • 박지은 (중앙대학교 생명자원공학부 식물시스템과학전공) ;
  • 권용희 (국립원예특작과학원 배시험장) ;
  • 이별하나 (중앙대학교 생명자원공학부 식물시스템과학전공) ;
  • 박요섭 (중앙대학교 생명자원공학부 식물시스템과학전공) ;
  • 정명희 (중앙대학교 생명자원공학부 식물시스템과학전공) ;
  • 최진호 (국립원예특작과학원 배시험장) ;
  • 박희승 (중앙대학교 생명자원공학부 식물시스템과학전공)
  • Park, Ji-Eun (The Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University) ;
  • Kwon, YongHee (Pear Research Station, National Institute of Horticultural & Herbal Science) ;
  • Lee, ByulHaNa (The Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University) ;
  • Park, YoSup (The Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University) ;
  • Jung, Myung Hee (The Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University) ;
  • Choi, Jin-Ho (Pear Research Station, National Institute of Horticultural & Herbal Science) ;
  • Park, Hee-Seung (The Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University)
  • 투고 : 2013.05.06
  • 심사 : 2013.11.07
  • 발행 : 2014.02.28

초록

본 연구는 조생종 '한아름'의 기본적인 해부학적 과실 구조 및 과실 품질과 GA 처리 시의 변화를 구명하여 '한아름'의 생리적 특징을 이해하고자 수행하였다. '한아름'의 생육기별 과실 발달을 조사한 결과 만개기의 과실 구조는 바깥쪽으로부터 외표피층, 아표피층, 유조직층, 내표피층으로 구성되어 있으며 5종류의 유관속 조직이 관찰되었다. 코르크층은 무처리구에서는 만개 후 70일, GA 처리구에서는 만개 후 60일경에 형성되었다. '한아름' 품종의 세포분열 기간은 만개 후 40일까지이며 이후에는 세포비대에 의해 과실이 발달하였다. GA 처리에 따른 과실 비대와 조직 발달을 관찰한 결과, GA 처리는 '한아름'의 세포분열에는 영향을 미치지 못하였으며 세포비대를 촉진하는 것으로 조사되었다. 또한 과경부는 세포분열 정지기인 만개 후 40일부터 처리구의 유관속 조직이 무처리구에 비하여 큰 것으로 관찰되어 '한아름' 과실은 GA를 처리할 시 유관속 조직의 발달을 촉진하여 상대적으로 과실로의 양분 공급이 증가하는 것으로 생각되었다. 한편 수확기에 무처리구와 처리구의 평균적인 품질을 비교한 결과, 처리구에서 과중이 높았으나 경도는 낮게 조사되어 '한아름' 과실에 GA를 처리할 경우 수확 후 과실의 저장에 영향을 미칠 것으로 생각되었다.

This study was carried out to understand the physiological characteristics of early-matured 'Hanareum' (Pyrus pyrifolia Nakai) pears through anatomical structure and fruit characteristics and also the changes according to gibberellin (GA) treatment. The pericarp at full bloom consists of outer epidermis, hypodermis, parenchyma cell, and inner epidermis from the exterior and five types of vascular bundle tissues. Cork cell layer was formed at 70 days after full bloom (DAFB) in non-treated fruits and formed at 60 DAFB in GA treated fruits. Cell division period was from full bloom (FB) to 40 DAFB and then fruit enlargement was accomplished by the cell growth. Comparison of the fruit enlargement and fruit structure development by GA treatment or non-treatment showed that cell division of 'Hanaerum' fruits did not affect the GA treatment but fruit enlargement was affected cell growth. Fruit stalk of GA treatment fruits was larger than non-treated fruits from 40 DAFB which correspond to the period of the stop of cell division and 'Hanareum' was regarded GA treatment expedite of vascular bundle tissue growth and relatively increased nutrient transport to fruit. In addition to, average fruit quality between the non-treatment and GA treatment showed that fruit weight was higher in fruits treated by GA but firmness was lower and probably was effected fruit storing in 'Hanareum' pear.

키워드

참고문헌

  1. Choi, D.G. 2004. Changes of fruit characteristics and storage by gibberellin and polyamine treatment of oriental pear (Pyrus pyrifolia). J. Bio-Environmental Control 13:185-193.
  2. Choi, J.H., J.J. Choi, J.S. Lee, and Y.O. Park. 2009. Effect of gibberellin pasting on the fruit stalks and change of tree condition and pear quality in Niitaka varieties. Kor. J. Hort. Sci. Technol. 27(Suppl. I):101. (Abstr.)
  3. Esau, K. 1977. Anatomy of seed plants. 2nd ed. John Wiley & Sons, Ins., New York. p. 445-448.
  4. Hwang, H.S., I.S. Shin, W.C. Kim, Y.U. Shin, J.H. Hwang, and S.S. Hong. 2005. Breeding of a good quality, large size, and early summer season pear cultivar 'Hanareum' (Pyrus pyrifolia Nakai). Kor. J. Hort. Sci. Technol. 23:60-63.
  5. Kim, H.G., D.G. Choi, D.H. Yoo, and D.C. Choi. 2002. Change of fruit quality by gibberellins and polyamine treatment of pear. Proc. Korean Soc. Biol. Environ. Control Conf. 3:233-240.
  6. Kim, J.H. 1997. Recent pear cultivation. Osung books, Seoul, Korea. p. 213-214.
  7. Park, H.S. 1995. The pericarp of normal and shot berries: Differentiation of the structure and development of some biochemical constituents, specieall the tannins (In French). Ph.D. Thesis., Bordeaux I Univ., Bordeaux.
  8. Park, H.S., J.K. Kim, and I.K Yoon. 2002. Characteristics of fruit tissue development and fruit splitting occurrence in 'Whasan' pear. Kor. J. Hort. Sci. Technol. 20:88. (Abstr.)
  9. Youn, C.K., S.K. Kim, S.C. Lim, H.H. Kim, Y.K. Kim, C.H. Lee, and K.S. Choi. 2000. Effects of application time of GA paste on tree and fruit growth and fruit quality of 'Kamcheonbae' and 'Whangkeumbae' pears. Kor. J. Hort. Sci. Technol. 18:383-386.
  10. Zhang, C., T. Kenji, T. Fumio, M. Kazuhiro, and Y. Akira. 2005. 13C-phosphate accumulation in Japanese pear fruit during the period of rapid fruit growth in limited by the sink strength of fruit rather than by the transport capacity of the pedicel. J. Experimental Bot. 56:2713-2719. https://doi.org/10.1093/jxb/eri264
  11. Zhang, C., T. Kenji, S. Wang, T. Fumio, Y. Akira, and M. Kazuhiro. 2006. The impact of cell division and cell enlargement on the evolution of fruit size in Pyrus Pyrifolia. Ann. Bot. 98:537-543. https://doi.org/10.1093/aob/mcl144