참고문헌
- Gerald L Clore, Norbert Schwarz, and Michael Conway, Handbook of Social Cognition, Psychology Press, New York, pp. 323-417, 1994.
- Michael W Morris and Dacher Keltner, "How Emotions Work: the Social Functions of Emotional Expression in Negotiations," Research in Organizational Behavior, Vol. 22, pp. 1-50, 2000. https://doi.org/10.1016/S0191-3085(00)22002-9
- Peggy A Thoits, "The Sociology of Emotions," Annual Review of Sociology, Vol. 15, pp. 317-342, 1989. https://doi.org/10.1146/annurev.so.15.080189.001533
- 홍초희, 김학수, "트윗 감정 분류를 위한 다양한 기계학습 자질에 대한 비교 연구," 한국콘텐츠학회논문지, 제12권, 제12호, pp. 471-478, 2012. https://doi.org/10.5392/JKCA.2012.12.12.471
- 이철성, 최동희, 김성순, 강재우, "한글 마이크로블로그 텍스트의 감정 분류 및 분석," 정보과학회논문지:데이타베이스, 제40권, 제3호, pp. 159-167, 2013.
- 김민철, 심규승, 한남기, 김예은, 송민, "트위터상의 악의적 이용 자동분류," 한국문헌정보학회지, 제47권, 제1호, pp. 269-286, 2013.
- Angela Fahrni and Manfred Klenner, "Old Wine or Warm Beer: Target-specific Sentiment Analysis of Adjectives," Proc. The Symposium on Affective Language in Human and Machine , pp. 60-63, 2008.
- Minqing Hu and Bing Liu, "Mining and Summarizing Customer Reviews," Proc. The Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168-177, 2004.
- Xiaowen Ding, Bing Liu, and Philip S Yu, "A Holistic Lexicon-based Approach to Opinion Mining," Proc. The International Conference on Web Search and Web Data Mining, pp. 231-240, 2008.
- Maite Taboada, Julian Brroke, Milan Tofiloski, Kimberly Voll, and Manfred Stede, "Lexicon-based Methods for Sentiment Analysis," Computational Linguistics, Vol. 37, No. 2, pp. 267-307, 2011. https://doi.org/10.1162/COLI_a_00049
- Ley Zhang, Riddhiman Ghosh, Mohamed Dekhil, Meichun Hsu, and Bing Liu, Combining Lexiconbased and Learning-based Methods for Twitter Sentiment Analysis, HP Laboratories, Technical Report HPL-2011, Vol. 89, 2011.
- Bo Pang and Lillian Lee, "A Sentimental Education: Sentiment Analysis using Subjectivity Summarization based on Minimum Cuts," Proc. The 42nd Annual Meeting on Association for Computational Linguistics, pp. 271, 2004.
- Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan, "Thumbs Up? Sentiment Classification using Machine Learning Techniques," Proc. Emnlp 2002, pp. 79-86, 2002.
- 이공주, 김재훈, 서형원, 류길수, "뉴스 댓글의 감정 분류를 위한 자질 가중치 설정," 한국마린엔지니어링학회지, 제34권, 제6호, pp. 871-879, 2010. https://doi.org/10.5916/jkosme.2010.34.6.871
- Alec Go, Richa Bhayani, and Lei Huang, Twitter Sentiment Classification using Distant Supervision, CS224N Project Report, Stanford, pp. 1-12, 2009.
- Taku Kudo, MeCab. version 0.996, 2013.
- 이준호, 안정수, 박현주, 김명호, "한글 문서의 효과적인 검색을 위한 n-Gram 기반의 색인 방법," 정보관리학회지, 제13권, 제1호, pp. 47-63, 1996.
- 김철수, 김양범, "대용량 전자사전 구축을 위한 국어 대사전의 통계 정보," 한국콘텐츠학회논문지, 제7권, 제6호, pp. 60-68, 2007. https://doi.org/10.5392/JKCA.2007.7.6.060
- J Susan Milton and Jesse C Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, McGraw-Hill, Inc., New York, 2002.
- Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik, "A Training Algorithm for Optimal Margin Classifiers," Proc. The Fifth Annual Workshop on Computational Learning Theory, pp. 144-152, 1992.
- Jiawei Han, Micheline Kamber, and Jian Pei, Data Mining: Concepts and Techniques, Morgan kaufmann, San Francisco, California, 2006.
- Yiming Yang and Xin Liu, "A Re-examination of Text Categorization Methods," Proc. The 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 42-49, 1999.
- Jason DM Rennie and Ryan Rifkin, Improving Multi Class Text Classification with the Support Vector Machine, Technical Report 2001-026, MIT. 2001.
- 황두성, "지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교," 멀티미디어학회논문지, 제11권, 제7호, pp. 1035-1042, 2008.
- Thorsten Joachims, "Text Categorization with Support Vector Machines: Learning with Many Relevant Features," 1998.
- Sotiris B Kotsiantis, "Supervised Machine Learning: a Review of Classification Techniques," Informatica, Vol. 31, No. 3, pp. 249-268, 2007.
- Fabrice Colas and Pavel. Brazdil, "Comparison of Svm and Some Older Classification Algorithms in Text Classification Tasks," In Artificial Intelligence in Theory and Practice, Vol. 217, pp. 169-178, 2006. https://doi.org/10.1007/978-0-387-34747-9_18
피인용 문헌
- Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter vol.21, pp.3, 2016, https://doi.org/10.7838/jsebs.2016.21.3.015
- Hotspot Analysis of Korean Twitter Sentiments vol.18, pp.2, 2015, https://doi.org/10.9717/kmms.2015.18.2.233
- A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm vol.14, pp.2, 2016, https://doi.org/10.14400/JDC.2016.14.2.245
- A User Emotion Information Measurement Using Image and Text on Instagram-Based vol.17, pp.9, 2014, https://doi.org/10.9717/kmms.2014.17.9.1125
- Emotion Prediction of Document using Paragraph Analysis vol.12, pp.12, 2014, https://doi.org/10.14400/JDC.2014.12.12.249
- A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce vol.21, pp.4, 2015, https://doi.org/10.13088/jiis.2015.21.4.053
- Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5 vol.40, pp.1, 2016, https://doi.org/10.1108/OIR-03-2015-0068
- Comparing Machine Learning Classifiers for Movie WOM Opinion Mining vol.9, pp.8, 2014, https://doi.org/10.3837/tiis.2015.08.025
- 텍스트 분석 기술 및 활용 동향 vol.42, pp.2, 2017, https://doi.org/10.7840/kics.2017.42.2.471
- 도플갱어 브랜드 이미지 효과에 대한 실증적 분석: 인터넷 커뮤니티를 중심으로 vol.26, pp.1, 2014, https://doi.org/10.5859/kais.2017.26.1.21
- 심박 정보 기반 위치 정보 융합형 감정 추론 어플리케이션 개발 vol.8, pp.8, 2014, https://doi.org/10.15207/jkcs.2017.8.8.083
- 비정형 데이터를 이용한 층간소음 탐지 : 네이버 카페를 대상으로 vol.25, pp.3, 2014, https://doi.org/10.7319/kogsis.2017.25.3.087
- 소셜 미디어 텍스트를 이용한 장소 선호도 분석 기법 vol.25, pp.4, 2014, https://doi.org/10.7319/kogsis.2017.25.4.055
- 빅데이터 분석을 위한 비용효과적 오픈 소스 시스템 설계 vol.19, pp.1, 2014, https://doi.org/10.15813/kmr.2018.19.1.007
- Text Mining and Sentiment Analysis for Predicting Box Office Success vol.12, pp.8, 2018, https://doi.org/10.3837/tiis.2018.08.030
- 고객 감성 분석을 위한 학습 기반 토크나이저 비교 연구 vol.48, pp.3, 2020, https://doi.org/10.7469/jksqm.2020.48.3.421