Abstract
In this paper, we propose the non-contact gesture recognition algorithm using 4- channel electrometer sensor array. ELF(Extremely Low Frequency) EMI and PLN are minimized because ambient electromagnetic noise around sensors has a significant impact on entire data in indoor environments. In this study, we transform AC-type data into DC-type data by applying a 10Hz LPF as well as a maximum buffer value extracting algorithm considering H/W sampling rate. In addition, we minimize the noise with the Kalman filter and extract 2-dimensional movement information by taking difference value between two cross-diagonal deployed sensors. We implemented the DTW gesture recognition algorithm using extracted data and the time delayed information of peak values. Our experiment results show that average correct classification rate is over 95% on five-gesture scenario.
본 논문에서는 4-채널 전위계 센서의 배열을 이용한 비접촉 제스처 인식 알고리즘을 제안한다. 주변의 전기장 변화에 민감한 전위계 센서를 스마트기기의 제스처인식에 활용하기 위해서 실내 환경에서 극저주파 대역 EMI(Electro Magnetic Interference) 및 PLN(Power Line Noise) 영향을 최소화하였다. AC 형태의 입력 데이터 값에 10Hz LPF(Low Pass Filter) 및 H/W 샘플링 속도를 고려한 최대 버퍼 값 추출 알고리즘을 적용하여 선형적인 DC 형태의 데이터로 변형한다. 추가적으로 칼만 필터를 적용함으로써 노이즈를 최소화하며, 센서간의 배열을 고려한 데이터 차분 과정을 통해 목표물의 2차원적 움직임 정보를 추출한다. 추출된 데이터 값과 peak 값의 시차정보를 이용하여 DTW(Dynamic Time Warping) 제스처 인식 및 보정 알고리즘을 구현하였으며, 다섯가지 동작 시나리오 테스트 결과 95% 이상의 높은 인식률을 보였다.