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Interference and Throughput in Spectrum Sensing
Cognitive Radio Networks using Point Processes

Anthony Busson, Bijan Jabbari, Alireza Babaei, and VéajariVeque

Abstract: Spectrum sensing is vital for secondary unlicensed nodes of the cognitive radio technology is the spectrum sensifg [7

to coexist and avoid interference with the primary licensedusers
in cognitive wireless networks. In this paper, we develop mdels
for bounding interference levels from secondary network tothe
primary nodes within a spectrum sensing framework. Insteadof
classical stochastic approaches where Poisson point preses are
used to model transmitters, we consider a more practical moel
which takes into account the medium access control regulains
and where the secondary Poisson process is judiciously thied in
two phases to avoid interference with the secondary as welkahe
primary nodes. The resulting process will be a modified versin
of the Matérn point process. For this model, we obtain bounds
for the complementary cumulative distribution function of inter-
ference and present simulation results which show the dewgbed
analytical bounds are quite tight. Moreover, we use these hmds
to find the operation regions of the secondary network such tat
the interference constraint is satisfied on receiving primay nodes.
We then obtain theoretical results on the primary and secondry
throughputs and find the throughput limits under the interfe rence
constraint.

Index Terms: Cognitive radio, performance evaluation, stochastic
geometry.

I. INTRODUCTION

Spectrum sensing enables the secondary nodes to be pegcepti
of the spectral activity of the primary users and therebyidavo
and manage their level of interference. Different appreach
have been proposed for spectrum sensing ranging from energy
detection [8] and cyclostationarity-based sensing to ecatjve
spectrum sensing [7], [9].

What gives rise to such concepts to become realistic is man-
aging the level of interference being harmful to the incuntbe
users. Therefore, an understanding of the characterattiics
terference and its behavior is at the core of the problem of de
termining the degree of bandwidth efficiency and hence uisefu
capacity to be used by secondary nodes. Given that the grimar
and secondary wireless networks share the space and the spec
trum, throughputin both of these networks is limited by nalyo
the intra-network interference, i.e., the interferenceagthe
nodes of the same network, but also by the inter-network-inte
ference, i.e., the aggregate interference originated firams-
mitting nodes in one network on the receiving nodes of the
other network [10]. On the other hand, due to the factors like
randomness in the locations of the primary and the secondary
nodes, the type of MAC layer protocols and the scheduling al-
gorithms used in these networks which determine the simetta
ous transmitters, as well as the fading effect, the intitavoek
and inter-network interference, and their cumulated éféee

Dynamic spectrum access and management provides anm@ndom in nature. Therefore, statistical characterinatibin-
portunity to use the limited radio frequency more efficigntl terference is an important prerequisite for modeling anti op
This is irrefutably needed as there is a growing demand faization of throughput in the primary and secondary net&ork
higher transmission rates and increased network throughpihis is precisely our focus here and we develop analytical-mo
While this notion, in general, encompasses a variety of -wirels and bounds for the level of interference in order to extalu
less systems, one important scenario of interest is thespit  the impact of secondary transmissions on the primary ndtwor
which the unlicensed users are allowed to access the spectend determine the throughput.
licensed to the incumbent users on a non-interfering ottdichi  In [11], the authors show that there is a fundamental tr&fie-o
interference basis. The practical solution requires ws®lde- between sensing capability (a function of probability ofese
vices with cognitive radio capability to share the bandWidith tion in spectrum sensing) and achievable throughput (atifumc
primary users. of probability of false alarm in spectrum sensing) and otsténe

Considerable research has been undertaken in the area ofgitimal sensing duration which maximizes the throughpttén
namic spectrum access and management and cognitive nstwgdcondary network under the constraint that the primarysuse
(see for example, [1]-[5]). To implement such systems,oteri are sufficiently protected. Only a single point-to-poiattsmis-
approaches have been discussed that involve issues rdrging sion link in the secondary network is considered and theedfie
spectrum opportunity identification and exploitation todiuen interference among secondary nodes is ignored. [12] cerssid
access control (MAC) protocol [6]. One important componettie problem of maximizing the sum-throughputin the seconda
network subject to constraints on maximum interferenceiat p
mary receivers. The network is assumed to be comprised of a
finite number of nodes and that nodes have perfect knowledge
of primary-secondary and secondary-secondary path géms.
model does not consider the inherent uncertainty in pathsgai
due to random propagation effects and the randomness in the
spatial distribution of nodes. [13] considers interferenmdel-
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ing in spectrum underlay cognitive wireless networks arelrin . MODEL

ference IS approximated as §um_of normal and Iog-riormal aNyyve focus on the interference level at a receiver locatedeat th
dom vanabl_es. I_n [10], considering a simple Ggussgn_modghgin of the planeD = (0,0) and at a given time. Interfer-
throughput in primary and secondary networks is optimized e is assumed to be the sum of signal strengths generated by

using the optimum tr_e_1n3m|s§|on probability. I_n [14], the Y| the interferers transmitting at time We use the following
thors present a cognitive radio system for which they prépogqations to denote interference from primary transnsittera

a power allocation strategy that optimizes throughput uirde fimary receiver {»_, p), from primary transmitters to a sec-
terference power constraints on the primary network. I [1 ndary receiverfp_. ), etc:
— ) .

and [16], the authors study interference distribution igrde
tive radio networks when interferers are distributed adicay to

a Poisson point process, and thus assuming that transioitter = =

cations are independent of each other. But, it has been show—P = ZPP&Z (IIYi]l) andls—p = ZPSQZ (100,
e.g., [17] that spatial distribution of interferers playsimpor- =1 =1 1
tant role in interference distribution. Shape and variasfde- . . (1)
terference distribution do not depend only on the point @ssc =3 =X

intensity, but is strongly linked tF:) the sp{itial cori)elaﬁof)e- Ip—s = ZPPVZ'Z (IIYi]l) andls—s = ZPSBZ'Z (131
tween the points. For the same intensity of interferersavae =1 =1 5
of interference may vary from to 10 according to the con- )

sidered point process [17], the worst variance being gée@rawhere{¢;}, {¢;}, {v;}, and{;} are independent and identically
by the Poisson point process. In cognitive radio networés; s distributed random variables representing fading, ||) repre-
Ondary nodes use a SenSing mechanism to avoid harmful in@'nts deterministic path loss (a decreasing functiBﬁ)andPS
ference to primary nodes. Moreover, secondary nodes d8ect are the transmit power from primary and secondary nodes, and
nall/interference from the current transmissions of thewosec- (Y:)ienv (respectively(X;);cv) represent locations of the in-
ondary nodes. Consequently, interferers are not disetbide-  terfering nodes in the primary (respectively in the secoyida
pendently of each other, as with a Poisson point procesthéutnetwork. We assume that fading is Rayleigh. Consequently,
presence of a transmitter generates a spatial repulsiobiion  in the following we consider the random variablgs}, {&;},
areain its surrounding. In this paper, we propose pointgsses {,,}, and{g;} to be exponentially distributed with parameters
that aim to capture these correlations Ieading to a morerateu equa| tol. For fad|ng greater or lower thdnn average, we can
modeling of interference in cognitive radio networks. consider a lower (respectively greater) transmit powenther
We consider secondary nodes to monitor individual transmigords, the level of fading can be integrated in the trangmgjtt
sions from primary nodes. Upon detecting no activitiesy tire power Ps or Pp.
allowed to transmit. In this paper, using concepts fromtsise |t js obvious that according to (1) and (2), transmitter loca
tic geometry and the theory of point processes, we develggn plays a crucial role on interference. Interferenceéritis-
models for bounding the complementary cumulative distiibu  tion strongly depends on the spatial distribution of thetdim
function (CCDF) of interference level from secondary nottes taneous transmitters, i.6.X;)ienv and (Y;);epv distributions.
a primary node. We consider a practical model which takes irmonsequenﬂy, we consider two Stationary point proce@es
account the MAC regulations and where the secondary Poissi@}, = {V;}ienv) and®g (@5 = (X;)iev) describing loca-
process is judiciously thinned in two phases to avoid ieterf tions of the primary and the secondary nodes, respectiealy.
ence with the secondary as well as the primary nodes. The grxally, a point process consists of a random sequence pfgoi
sulting process will be a modified version of the Matern poirjistributed inIR¢ (See [18] or [19] for details). In the two next

process. We model the CCDF of interference level from sesubsections, we present the different point processes tosed
ondary nodes to a primary node for this Matérn point procegfdel transmitter locations.

representing secondary nodes. Interference and throtigbpu

timations for primary and secondary nodes are of interest. \&. Primary Nodes: Poisson

use our obtained models to finq the operation regio.ns_of.ut}e Se We consided p to be a Poisson point process distributed in
ondary ne_twork_ such that the interference _constralnt_lsfml IR? with intensity \p. A sample of this model is presented in
on receiving primary nodes. We then obtain theoretlcalltxesuFig_ 1(a). For this model, we have a cognitive radio systethén

on the primary and secondary throughputs and find the througly; pand in mind, where the primary nodes are TV transmitters.
put limits under interference constraint. Therefore, primary node location does not depend on a sgnsin

The remainder of this paper is organized as follows. We dgmorithm but more on the TV antennas deployment.
scribe the model, i.e., interference definition and the temp

processes modeling primary and secondary interfererse@a SB. Secondary Nodes: A Modified Version of the &fatPoint

tion 1. We present results on interference distributiontfeese Process

point processes in Section Ill. Section IV considers theugh- We assume that a secondary node listens to the medium be-
putunder the interference constraint. Numerical evabwatand fore transmitting. If it detects the transmission of a frafinoen

S|mulat|0ns are also prowded to _conflrm the accuracy of the % nother secondary node or a primary node, it defers its own
tained results in Section V. Section VI concludes the paper.

transmission. We assume that a transmission is detected by a
node if the received signal strength from another node iatgre
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@) (b) (©

Fig. 1. Sample of the initial point processes and selection of the Secondaries: (a) Primary (black) and secondary nodes (white) are Poisson, (b)
selection of the secondary nodes, and (c) primary and selected secondary nodes.

than a threshold. We also consider a simplified deterministio Simultaneous transmitters of the primary network are dis-

path loss and assume that the received signal strengthlis.) tributed according to a Poisson point procéss with inten-

wherew is the distance between the two nodes dhds the  sity Ap.

transmission powerKp or Ps). For a given value ofy, there e Allthe secondary nodes are distributed according to a Boiss

is therefore a maximal distance for which a transmissioreis d point proces® s with intensity \s.

tected. As this distance depends on the transmission pawger,e We consider a classical Matérn point process Withas the

consider two different detection distances. underlying Poisson process and distance threshgldt cor-
The Matérn point process is suitable to model the tranemitt responds to a first thinning dfs by taking into account trans-

positions when using this medium access protocol. Bagidall mission from secondary nodes.

is formed by removing a subset of the points of a Poisson pomtThe Matérn point process is thinned a second time to take int

process in such a way that distances between all the paies of r account the transmission from the primary nodes. If a pdint o

maining points are greater than a predefined constano( /. p the Matérn is located at a distance less tharfrom a primary

in our case). This model has already been used to represgmt sutransmitter, it is removed. )

networks in [20] and [21]. We propose a modified version of the The intensity of the selected secondary nodes denoted; by

Matérn point process in order to take into account detadtmm  is then given by:

both primary and secondary nodes. We present below thea-class

cal Matérn point process, followed by a modified versionahhi , , 1 —exp {7)\S7rh23}

suits the context of our problem. Ag = exp{—Apmhp} Y .4
s

B.1 Definition of Matérn Process The computation of this intensity is straightforward. Imiy

of the classical Matérn is known (given by (3)). The diffece
between the classical and the modified Matérn lies in thersgc

m(x) independently and uniformly distributed @, 1]. We per- step where a point (a secondary node) is removed if there is a

form a dependent thinning of the Poisson process. We retaif Nt Of the first Poissor_1 point process (a primary node)_é&ad
point if and only if the points in the bab(z, h) contains no tance less thahp. A point selected after the first step will def-

points with marks smaller tham(z). Formally, the points of initely be kept, if there is no point b at a distance less than
the Matér is the set hp. This event occurs with probabilitgp { —Aprh% }. Inten-

sity of the modified Matérn point process is thus the Matéfn
{z € ®| m(z) < m(y), Yy € ®Nb(x,h)\z}. tensity multiplied by the probability of having no primargae
lying at distance less thdrne of a secondary node. A sample of
The intensity \;, of this process is known (see for in-this model and the way it is built is presented in Fig. 1:

We consider a homogeneous Poisson point prodessth
intensity \. We associate with each pointa random variable

stance [18], page64) and is given by: e Fig. 1(a): Primary (black) and secondary nodes (white) are
distributed according to two independent Poisson point pro
cesses.
A = 1 — exp {—A7wh?} 3 ° Fig. 1(b): Inhibition balls with radiug s are plotted around
wh? ' the secondary nodes. Secondary nodes which are going to be

removed (due to the two successive thinning) are in grey. The
B.2 Our Model selected secondary nodes are white.

We use a modified version of the Matérn point process as theFig. 1(c): We keep only those secondary nodes which do not
primary nodes do not apply the same rule to access the mediunhave primary nodes within their inhibition ball and satitfg
The model is as follows: Matérn condition on the marks.
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; O
hp!
) © |
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Fig. 2. Primary and secondary interferers distribution when we compute interference at a receiver: (a) A node at (0, 0) is receiving data from a
primary transmitter at D = (d, 0). Primary interferers are distributed in IR? according to a Poisson point process. Secondary interferers are
distributed according to a modified Matérn in IR2\b(D, hp), (b) a node at (0,0) is receiving data from a secondary transmitter at D = (d, 0).
Primary interferers are distributed according to Poisson point process in IR?\b(D, hp). Secondary interferers are distributed according to the
modified Matérn in IR?\b(D, hs).

C. Scenario of the signal from transmitters distributed as a Poissomtpoi
process inR?\b(D, hp). Secondary nodes cannot lie at a dis-
tzcajnce less thang from each other. Therefore, when we con-
0 .

ider interference from secondary nodés (s) we shall as-
ume that they are distributed as a modified Matérn point pro

cess inR?\b(D, hs). This scenario is shown in Fig. 2(b).

We consider two different cases for interference distigng.
These are when the receiver 1) receives data from primarg n
and 2) receives data from secondary node. Computatiores dif
for these two cases. >

C.1 Interference at a Primary Receiver

We assume that the receiver is located at the origin of the ll. CCDF OF INTERFERENCE
plane and receives a frame from a primary transmitter lacate In cognitive radio networks, secondary nodes must keep a

atD = (d,0) (at distanced). Since this node is transmittingq,, interference level in order to ensure that performanice o
to the receiver, we do not take into account the signal strenge imary network is not deteriorated. The tolerablerfete
from this transmitter in the interference computation. A8 P once level can be expressed through different quantitieis. al-

mary nodes are distributed according to a Poisson poinessyc lowance may be given through the probability that interfese
location of the other primary transmitters (the interfejés still does not exceed a certain threshold:

a Poisson point process (see Slyvniack’s theoremin [18]).p
is then the sum of the signal from primary transmitters. They
are distributed as a Poisson point procesiRin But, secondary
nodes are dependent on primary transmitters. Accordingito o
model, we cannot have a secondary node lying at a distarge le
thanhp from a primary node. Consequently, when we consid
interference from secondary nodes, we shall assume that t
are distributed inR*\b(D, hp) whereb(D, hp) is a ball cen-
tered atD with radiushp. Is_, p is then the sum of the signal
from transmitters distributed as a modified Matérn poiotess
in IR?\b(D, hp). This scenario is shown in Fig. 2(a).

P(Is»p >n) <e (5)

rSConditions may also hold for the signal to interference plus
ﬁoise ratio (SINR). This SINR can be evaluated for a primary r
Civer on the edge of the keep-out region or the protectedmeg
Given a path-loss function, and a worst-case fading ancenois
we can deduce the maximum interference from secondary nodes
which ensures a SINR greater than this threshold. The admiss
ble interference can also be deduced from the classicatitjean
used in cognitive radio literature [22], [23Pyp (probability
of miss detection) ané’z 4 (probability of false alarm). Given a
We assume that the receiver is located at the origin of tfiged protected regio® », where secondary nodes are not sup-
plane and receives a frame from a secondary transmitter pmsed to be active, the probability of miss detection is tiodp
cated atD = (d,0). We do not take into account the sig-ability for a secondary node to detect the medium free wiserea
nal strength from this transmitter in the interference campthis node is within this protected region. This may happeamwh
tation. As a primary transmitter cannot be at a distance lessecondary node estimates the energy in the targeted fregue
thanhp from a secondary transmitter, primary interferers foband and compares it to a detection threshold [24], [25]. & ve
lows a Poisson point processii\b(D, hp). Ip_,s is the sum low signal level may be measured (due to a significant level of

C.2 Interference at a Secondary Receiver
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fading for instance) whereas the node is in fact within thee pr  The proof is given in the Appendix. The approximation used
tected region. The false alarm probability is the oppoditeis to evaluate the CCDF ofp_, p is found by taking the second
corresponds to the probability that the secondary nodetis oimtegral of (7) equal td. It is a good approximation whepor
side the protected region whereas its sensing algorithiodtes A\ p is small:

that it is inside. These two probabilities are formally defiras

follows. If Detection = 0 (respectivelyl) when the sensing

algorithm of the secondary node considers that it is ouigiele

spectively inside) the protected region: oo

P(Ipﬂp > 7]) ~ 27T>\p/
0

exp 4 — I rdr, (9)
. . . Ppl (’I“)
Pprp = P(Detection = 0] This node is in the protected regign

Pr 4 = P(Detection = 1| This node is not in the protected regjon P(Ip_s >n)~\p / exp {—L}dm.
N R2\b(D,hp) Ppl([lz|])

The threshold used by the sensing algorithm at the secondary (10)
nodes to detect medium free/busy may be computed in order to
keep these two probabilities under a certain valué (or in-
stance as in [22]). These quantities are generally compaked
ing into account only noise and fading [24], [25]. A more acclB. Interference Generated by the Secondary Nodes (Modified
rate computation should also involved interference fromary Matern)
and secondary nodes. All these quantities (In (5), SINRp
or Pr4) require the knowledge of the interference distribution,

in particular the CCDF. For the proposed models, we devel%)we consider the modified version of the Matérn point process
bounds and approximations on these probabilities to déterm, model the secondary nodes (presented in subsection II-B)

the parameters for the secondary network for which comﬂa’tioWe compute mterfere_nce fora node located at the orlglnf th
planeO = (0,0). This node receives data from a transmitter

on interference on the primary network is met. CCDF/r, located atD = (d,0). As explained in subsection II-C, there

a%?cﬁsxgdzrguggsen;enddg Suigsseuck:lsoenctlil(l)hAllirC]:d 11-B, from " an inhibition ball centered ab. This ball isb(D, hp) when

MP ra ' the transmitter ab is a primary node, anb( D, hs) otherwise.
A. Interference Generated by the Primary Nodes (Poisson) From the intensity of the modified Matérn (see (4)), it isyeas
to find an upper bound on the interference generated by the sec

We propose a lower bound on the CDF of the interferen%dary nodes. Itis found by using the Markov inequality:

generated by the primary node&(,p and Ip_,g). We then
deduce an upper bound on the CCDF. We also propose an ap-

proximation which is easier to compute than this bound.
Proposition 1: The lower bound of p_. p is: P(Isp>mn) <

+oo
P(Ipop<n)>1-— 271’)\13/0 exp{—#(r)}exp{
Since the modified Matérn is stationary, we can apply Caithpbe

l—expf_m (1 _ 1
oo P Pp \itw) — 1 . )
- Ap27r/ 1- ) wdw prdr. formula (see [18] page 104) to compute mean interferendé (wi

E [ISﬂP]
n

: (11)

1(r) \g given by (4)):
(6) s9d y( ))
The upper bound on the CCDF is then:
i n } { Ell ]:XP/ L(|
P(Ip_, A - S—P S ull) du, (12)
(Ipsp>n) <21 P/o exp{ Prl(r) exp — S B\NDAE)
- _ /Y (O S '
- Ap?w/Jr <1 — ! eXP{ rr (l(w) l(r))}>wdw}rdr. E[IS—>S] = )‘SPS/ —l (Hull)du (13)
r 1- 1 R2\b(D;hs)
(7)
ForZp-,s, we obtain The bound given by (11) being not tight, we propose an ap-
. proximation to compute this CCDF instead. It has been shown
P—s 21) < Ap P57 through a statistical study of interference , thatifgeence
P(I >n) <A ENTUED, h h istical study of interf 17], thatiife
R2\b(D ) P generated by a Matérn point process follows a log-nornsal di
% exp{ _ )\P/ (1 tribution. In order to determine the two parameters of tigsid
> llzllsllu=D|>hp bution, we use mean and variance of interference. The mean in

. 1 1 terference is given by (12). The second moment of interfegen
L —exp {7 Pp (W IRUED ) } du\lzd (8) generated by a Matérn point process has been computed]in [26
B 1_ éEHU}B prar. We obtain a variant of this second moment for our model. Let us
* definev(A) the Lebesgue measure df(area ofA) for A c IR?.
We have:
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, PIWD:P(ISﬂP+IPﬂP+PP§Z(d)+W<"y) Withd<RP,
[ 0] = X5 [ PEE[C?) U(Ja]*d (15)
R2\b(D,hp) .
2P§ PFA:P(Isﬁp—l—lp_)p+PP€l(d)+W>’y) withd > Rp.
T2 / E[G1¢2] (16)
TS JIR2\b(D,hp) J R2\(b(z,hs)Ub(D,hp))
1 — exp {=Asv(b(z, hs) Ub(y, hs))} For a constant nois@’, we obtain:
v(b(z,hs) Ub(y, hs)) Pyp =P(Iswp+Ipsp+ Ppél(d) + W < 7)
=P(p,p<~y—W —Is_p— Ppél(d
exp { —Asmh%} — exp {—Asv(b(z, hs) Ub(y, hs))} (:P,WP :: W jd)P Pl
— —W—-Ppu
v(b(z, hs) Ub(y, hs)) — mh2 _ /PPW) / P(pp <~y —W —s— Ppul(d))
0 0
x exp {=Apv(b(z, hp) Ub(y, hp)) M ([2]) L(||yll) dydz Frogn (s)ds exp {—u}du. 17)
(14)

The last equation has been obtained by conditioning by

the distribution of¢ and Is_,p for which we assume that
with E[¢?’] = 2 and E[Gi(z] = 1. The proof is straight- it follows a log-normal distribution.f,.,n(.) is the pdf of
forward with regard to the one presented in Proposition tRis log-normal distribution. The two parametgrsand o of
of [26]. It suffices to weight the probability for two points t this distribution can be computed from mean and variance of
belong to the Matérn point process by the probability of—ha\fsﬁp (E[Is—p] = exp{u+ 0_2} and Variance(Is_p) =
ing no point of®p (a primary node) at a distance less tha(bxp {02} — 1)exp {2 + 02})_2 Mean and variance are given
hp (from these two po/ints). In the equation above, this prola-y (12) and (14) from which we deduce the two parameters
ability is included in A4 for the first term, and is equal t04n4,,. " A random noise can also be considered, it adds an in-
exp{=Apv(b(z, hp) Ub(y, hr))} forthe second term. The ap-teqral function of the noise distribution in the formula abo
proximation is thens_, p ~ log-normal(m, o) wherem and P(Ip_p <~ —W — Is_p — Ppul(d)) is estimated from (6).
o? correspond to mean and variance of this log-normal disthO, we assumed thdp_, » andls_, » are independent.
bution: m is given by (12) and® = E[I5_,p] — m? with Generally, computations of these probabilities negletrin
E[I5_,p] given by (14). ference from primary nodes. It simplifies this equation wit

For Is_,5, we use the same approximation. Parameters bf_,p = 0):

the log-normal distribution are given by (13) for the mead an
(14) for E [I2_, 4] where we have to substitutéD,hp) by Prp =P (Isop + Ppél(d) + W < )
b(D, hg). =P(Issp <v—W — Ppél(d)). (18)

If we condition by¢ and assume thdl” is constant (with
C. Probability of Miss Detection and False Alarm ~ > W), we obtain:

In order to compare the classidat 4 and Py, p probabilities Poray
with and without interference considerations, we proposara  Prvp = / P(Is—p <7y —W — Ppul(d)) exp{—u}du
alytical derivation of these two quantities. We assume thet 0 w
protected region is a ball centered at a primary transmiitter _[PrT@ 1 In(y — W — Ppul(d)) — p
cated atD = (d,0) and with radiuskRp. Rp will be equal to N /0 B 20
hy (the inhibition radius around the primary nodes) in all our % exp {—u}du. (19)
numerical evaluations. A secondary node, located at thggnori
senses the medium to determine if it is in the protected regio Computations of’x 4 is the same. It suffices to tak®., =
or not. The decision is made by comparing the sensed enetgy p,,, but withd > Rp.
level with a specific thresholg. The received signal strength at
this secondary node can be estimated as the sum of intecéeren
from primary and secondary nodes, plus noise, plus the lsigna IV. THROUGHPUT ESTIMATION
strength from the primary transmitter. Interference atdées-  |n this section, we focus on the obtainable throughput b bot
ing node is the same as interference at a primary node dedcriprimary and secondary networks. This throughput is defirsed a
in subsection 1I-C.1. Consequently, interference at tmsisg the mean number of frames that are correctly received per sec

node is denoted a& ., p + Is—, p in the next formulas. ond in a unit square area. We estimate the throughput asviallo
Pyrp is the probability that the signal strength is less than 1

whereasi < Rp and Pr4 is the probability that it is greater T=X1-FER)— (20)

thany whereasi > Rp. In the following equations, we will ty

assume that the nois& is constant. To obtain formula with awhere is the intensity of the simultaneous transmittersjs
random noise, it suffices to condition the final results witl t the mean time required to send a frame, &R is the frame
distribution of . We obtain, error rate. We compute this quantity for the model that weshav
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developed: primary nodes are distributed according to sseai . dar = s exp _)\P/ oPpl(|z|)

point process and secondary nodes are distributed acgatain """ 7F R2\b(D,hy) Psl(d) +0Ppl(|z])

our modified Matérn process. For tRERwe use the definition E[ {_ o, H E{ {_ 0 WH 1

and method developed in [20]: R Psl(d) 7% P Psi(@) i
(25)

FER = P(SINR<O). (21)
WhereXS is the intensity of the Matérn point process given by
In the proposition below, we give the throughput for the pri4) and wherd s_, p is supposed to follow a log-normal distri-
mary and secondary networks. We consideriE®& for a node pution with mean and variance given by (12) and (14). In (12)
which is located at the origin and is receiving a frame from&nd (14),5(Dp, hp) must be replaced by Ds, hs) in the first
node at distancé. It corresponds to scenarios described in sulntegral when we consider tHeE R for the secondary nodes. In
sections II-C.1 and 1I-C.2 where the transmitting nodéais  order to obtain thé” ER in the secondary network, it suffices to
a primary node (respectively secondary node). First, we figdbstitutePr((d) by Psi(d) in (22).
the FER for the modified Matérn point process. We considerhe proof is given in the Appendix.
FER for a transmission from a primary node. Computations
for the secondary network is equivalent. Then, we deduce the
throughput from (20). We assume that the noise is an indepel- NUMERICAL EVALUATIONS AND SIMULATIONS

dent random variablg/. Let¢ an exponential random variable | this section, we present the simulation results. We im-

with parametet, we get: plemented a simulator coded in C. This software simulates th
cognitive radio network: Poisson for the primary nodes dred t
Ppél(d) modified Matérn for secondary nodes. It aims to estimatathe
FER=P(SINR <) =P (W +Isup+1Ipop < 9) curacy of approximations we made: Log-normal distribufimm
_p (£ - 0Ipsp+Issp+ W)) Is_,p and the independence betwekn, p andlp_,p. Also,
Ppl(d) it is used to compare the performances of the cognitive radio
e {exp {7 0 IS_)P} exp {7 6 Ip_mH network_when interference is taken into account with a sgéena
Ppl(d) Ppl(d) without interference.
CE {exp {7 0 H _ We cpnsider twp different contexts of applications for cegn
Ppl(d) tive radio. Scenarios and results for these two contextpiae

(22) sented in the two next sections.

It is not possible to compute this quantity analytically as . . -

Ip_,p andIs_, p are dependent and the joint distribution is urfe" Cognitive Radio in the Television Bands

known. As an approximation, we assume that, » and/p_, p We consider the classical scenario targeted by the IEEE

are independent. We will show through simulations thatdlsis 802.22 standard [27]. It describes cognitive radio to ojgeira

sumption does not bias the results. Using this assumptien, thie television bands. It allows a secondary node to oppistitin

obtain: cally access the TV bands. The sensing algorithm used by sec-
ondary nodes to detect an activity on this license band and it
associated parameters is thus crucial to guarantee thaabse

0
FER=1-E {exp {*mlsﬁPH of a television signal and maximize the usage of this spattru
0 0 This problem has already been addressed in [22] and [24], but
xE {exp {*mIP—»PH E [GXP {*m H all these studies do not take into account interference fevm

(23) secondary nodes in the sensing algorithm. For this scemnagio

FER can thus be expressed with regard to the Laplace trars]g_ow the impact of interference from secondary nodes onithe d

forms of W, Is_,p andIp_, p. We have shown thalis_. p can mensioning of IEEE 802.22 sensing algorithm. The simutatio

. R arameters are similar to the ones used in [22] and [24]. We
be approximated by a log-normal distribution, so we use thée L o

I assume that a TV station is transmittinglaf/ W (90 dBm)
Laplace transform of the log-normal distribution to conmgut

Elexp{—0Is_,p/Ppl(d)}]. Laplace transform of the noise is" ;[jhthI;F ‘T’lt615 ]\é”I{Z we cc()jn_suiﬁr tlf_}%pstyélggs function
also directly computable from its distribution. The exgioa anc shadowing mode: proposed In the 11 - - recommen-
for I i given in the proof of Proposition 2. dation [28]. The path—losg functlo_n plotted in Fig. 3 is athon
PP I1SQ proot P . lynomial function. The exponent pararsete
Proposition 2: Approximation of throughputs for primary LOUS PIECEWISE poly P P
and secondary networks are: is 3 for distanced less thanl km, 2.7 for d < 30km, 7.65
for d < 100 km, and&.38 for greater distances. The transmit-
+oo gi(r) ting power for secondary nodes3s dBm. It corresponds to
Torimary = Ap exp {*’\P%/O mrdr} the maximum power allowed by the IEEE 802.22 standard. The
0 0 1 distance between the TV antenna and the primary receiver for
*E [e"p {*mls—’PH E {e"p {*mw}} t;”  which we compute SNR and SINR 184.2 km. This distance
equals to the protection contour computed in [22] and [24]. |
(24) corresponds to the distance at which all TV receivers not re-
ceive harmful interference (it only takes into account apand
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Fig. 3. Path-loss function.

e Simulations ——
etical approximation -

guarantees that the ratio between received signal and isase

least23 d B). Standard deviation of the fading is equabtd d B.

It has been set according to the ITU-R 1546 recommendation.
Values ofhg andhp correspond to the distance at which the 01
signal from a secondary (respectively primary) node is equa &
—116 dBm. It is the threshold given in the IEEE 802.22 stan- 3
dard. We chose a very small intensity for the primary nodes,
because interference from primary to primary nodes was con- g,
sidered more or less negligible, at least compare to secpnda
interference. Indeed, TV antennas has been planned in order
to keep a low level of interference between them. Instead, we
wanted to highlight the impact of interference from secaynda , \
nodes (for which there are 10,000 potential transmitterfor 1 " Te-20 le-19 le-18 1e-17 1e-16
10 x 10 km?2) on primary communications. The other parame- Interference-madified matem ()

ters are given in Table 1. (b)

o ] Fig. 4. CCDF of Ip_,p and Is_, p. Comparison between theoretical
A.1 Interference Distribution results and simulations: (a) CCDF of Ip_, p for the Poisson point
process and the upper bound and (b) CCDF of Is_. p for the modified

In Figs. 4(a) and 4(b), we plotted interference CCDF at a Matérn point process and the approximation from log-normal.
primary receiver where interference is generated by pgmar
and secondary nodes. The theoretical curves corresporrd to (
and (9) in Fig. 4(a). In Fig. 4(b), we plotted interferencstdi A.3 Probability of False Alarm and Miss Detection
bution generated by secondary nodas (p). It compares sim- . )
ulations to the approximation based on a log-normal distrib !N Order to evaluate the impact of interference on perfor-
tion where parameters are set according to mean and variaf@Ces, we consider the two classical quantifies and P p
of Is_, p. It appears that the different assumptions made in tA& presented_ln subsection II_I-C. Theoretical curves anme-co
model do not impact the results, and the proposed theoretigd€d according to (19) and its complementafy-f = 1 —

distribution of interference matches perfectly to the dated ’Mnp). The thresholdy is set to—93.12 dBm. It corresponds
ones. to the signal strength from the TV transmitter on the protec-

tion contour (atl34.2 km) without considering noise and in-
terference. hg and hp are set accordinglyils = 22.3 km,
hp = 134.2 km).

In Fig. 5 we plotted the CCDF of SNR and SINR for the pri- In Fig. 6(a), we plotted the probabilit),;p with regard to
mary receiver. The CCDF of SINR is given by (22), and the SNfRe distance between the primary receiver and the TV transmi
is not given here but it is trivial as this quantity dependf/onter. It gives the probability for a secondary node to miss the
on the fading distribution (the noise was assumed constent fletection of the TV transmitter. The limit of the protected r
these simulations). Simulations fit perfectly well to thedhet- gion is represented with a vertical linel&t4.2 £m. In order to
ical curves. Also, we observe that there is significant diifce compare to the classical approach where only noise andgadin
between SNR and SINR distributions. Therefore, it proves this considered, we plotted this probability without integiece
the dimensioning of the sensing algorithm cannot just take i (Simulations - without interferenda the figure). We observe
account the SNR, but has to consider interference. that all the curves fit until00 k£m, then interference from sec-

A.2 SNR and SINR Distributions
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Simulation parameters Numerical values
Emission Power for primary nodes 90 dBm
Emission Power for secondary nodes 36 dBm
Standard deviation of fading 5.5dB
primary intensity £ p) 1.27¢7% (1 node in500 x 500 km? in average)
secondary intensity\s) 0.003183 (1 node in10 x 10 km? in average)
Distance between the primary receiver and its transmitter 134.2 km (D = (134.2,0.0))
Inhibition ball between primary and secondary nodgs)( 236 km
Inhibition ball between secondary and secondary noblgs 50 km
Noise —99.2dBm
Observation window 1,000 x 1,000 km?
Number of samples 200, 000

Table 1. Simulation parameters for the IEEE 802.22 scenario.

= Si;*nulations—w‘ith interferenc‘e — X -
Simulations — without interference ---x--- i
Theoretical — with interference ---:--- =
8 )
+ X
o1 S o L
o £ /
E ,
o
2
0.01 B
3
o
SNR — simulations —+— o
SNR — theoretical ~--x--—- 0.01 X,
SINR — simulations ------
SINR — theoretical =}
0.001 L
0.01 0.1 1 10 80 920 100 110 120 130 140
SNR/SINR Distance between the TV-Transmitter and the node
Fig. 5. CCDF of SNR and SINR sensing the medium (o)
o ' @
! T B B e
ondary nodes increases the energy level in the TV band making e Simulations — with interference
the detection easier. For the chosen parameters, thegnié si e T arerical s th Interforence, -
icant difference for the values df,;», with and without inter- X
ference. For the probability of false alarm plotted in Fi¢h)6 § i
. . = 0.1
results have to be considered for distance greaterliBtad km. © N
For these distances, interference from secondary nodéteis o 3 x|
above the detection threshold leading to a greBier with re- s

Yy

gard to the case where interference is not taken into accountz ‘
Therefore, secondary nodes detect a busy medium. However, @ 001 X
cannot be considered as a false alarm as the medium is used k§’
secondary nodes. The computationfgf, with interference is 5
thus questionable. |

0.001 -
B. Data Network 100 110 120 130 140 150 160 170 180 190

Distance between the TV—-transmitter and the node

In this second scenario we consider a more original network . !
sensing the medium (km)

(with respect to the cognitive radio literature). We wartteds-
timate the gain of cognitive radio in a wireless data network (®)

We assume that a frequency band has been licensed for a Wg-s.  probability of miss detection and false alarm: (a) Probability of

less data network. Primary nodes use this frequency band tomiss detection and (b) probability of false alarm.

exchange frames in an asynchronous manner. Secondary nodes

can use this band without disturbing primary transmissiSes-

ondary nodes behave as in the previous scenario. They $ensétte same, only the parameters change. They are given in Zable
medium to evaluate the energy and transmit a frame if this eand are close to the one used in wireless data network (IEEE
ergy is below a predefined threshold. The theoretical madeld02.11a to be precise). We focus on the throughput of primary
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Simulation parameters Numerical values
Path-loss function I(u) = min (1, (3/4mu)™)
B 0.346 m (wavelength)
« 3.0
Emission power for primary nodes 40 mW
Emission power for secondary nodes 40 mW
Primary intensity §p) 0.00005 (1 node in140 x 140 m? in average)
Secondary intensity\s) 0.001 (1 node in33 x 33 m? in average)
Inhibition ball between primary and secondary nodes)( 50 m
Inhibition ball between secondary and secondary noblgp 50 m
Observation window 100 x 100 km?
Number of samples 1,000, 000

Table 2. Simulation parameters for the data network.

0.1 T

T
Primary — simulations

iy simulatons —— interference generated by secondary nodes becomes saghific
Secondary —simulations increasing thé&-ER and decreasing the throughput. Throughput
008 | 1 of the primary network is more regular. It is not impacted by
secondary node transmissions umtiteaches a threshold (ap-
proximatelyn = 6.0e~%). For this modely (and consequently
v, hg, andh p) should be chosen close to this threshold. It offers
: a good throughput to the secondary network without pemegizi
004 | throughput of the primary network.
A consistent technique to compute the threshdigs) is to
set a tolerable reduction of primary throughput due to séaon
interference. The paifr, ¢) can be computed in such a way
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, that the primary throughput ratio (throughput with inteefiece
: : over throughput without interference) is greater than al@re
n fined threshold. This ratio is easily computable. It suffites
compute the throughput given by (24) in Proposition 2 to con-
sider the throughput with secondary interference, and dhees
formula with Is_,p = 0 to obtain the throughput without in-
terference. Unfortunately, these equations cannot beléeuhal
and secondary networks. We want to determine the best thregtain a closed form fafy, €), and a numerical calculation must
olds (e, ) on the condition on interference given by (5) whictpe performed.
maximizes secondary throughput without impacting thrguugh
in the primary network.
For a given value o, we use the bound and approximation VI. CONCLUSION
developed in S_ectlon lll to determine p_ara_meters of the SeC'Obtaining interference distribution and throughput foi- pr
ondary network in such a way that transmissions from seagnda . o ' .
. " . : mary and secondary nodes in a cognitive radio network is
nodes satisfy the condition on interference. In Fig. 7, wg va

of (5) and we observe the throughput under this constragrt. Ié)f cons[derabl_e interest. We proposed a mod|f|ed version of
the Matérn point process to model accurately interferealo

(o7
this figure, the path-loss i§u) = min ((%) 71) with  tions. Our model takes into account the spatial correlatien
B = 0.346 m (wavelength) andv = 3. The other parame- tween primary and secondary nodes, as well as between sec-
ters are\p = 0.00005, A\s = 0.001, Ps = Pp = 40 mW, and ondary nodes. This spatial correlation models the sensaahm
6 = 10. The distance between receiver and transmittér5s10 anism performed by the secondary nodes to detect transmis-
meters.hs andhp are computed according to the method desion in progress from primary or secondary nodes. We derived
scribed in subsections IlI-A and IlI-Be = 5.0e — 02. n varies closed formulas and bounds for the interference distriiougind
(n ande are defined in (5)). We considerédd00 samples. We throughputs for both primary and secondary networks. Nimer
also performed simulations varyingrather thany. It led to cal results show that interference plays an important roléhe
the same behavior, and is consequently not shown in this pagnitive radio network performance. In particular, thela-
per. In this figure, we can observe that throughput of the sdality of miss detection is overestimated when interfeeismot
ondary network forms a peak. This peak is due to the followirigken into account, whereas probability of false alarm ideun
phenomena. When increases, the intensity of the simultaneestimated. Thus, accurate interference distributiongsired to
ous secondary transmitters increases, since the intedemn- estimate properly the different threshold used by the sgaign
straint becomes looser. There are, therefore, more trétessi nodes to decide if they can transmit without disturbing aniyn
and more frames received. When this intensity becomes higbmmunications. We have also shown that secondary nodes may

002 F 4 |

Throughput — primary (frames/sec/m?)

Fig. 7. Throughput in the data network.
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have a considerable throughput without penalizing prinp@ty  p(7,_,, <) =1 - ,\P/ E° |:exp {—%}111 <n} dz
formances. The proposed analytical formulas for throutjapd L Pel(|lzl) J ="
interference can be used to obtain operational secondaaies
rameters. They can be optimized to generate a low level of in-
terference on primary nodes leading to a negligible in@eas _
on FER, or equivalently a negligible reduction of throughquhereE [] is the expectation under Palm measure [18], [29]
whereas optimizing throughput of the secondary network. and

(37)

+oo
Appendix Ipp = > Pp&l(Ivil)  (38)
Proof: Proof of Proposition 1. We distinguish two cas®s Vi€ R2\b(—a, []])

the bound o' p_, p, andb) the bound o p_, 5.

Bound on Ip_,p. First, we compute the bound fdp_,p Whereb(—z, ||z|) is the ball centered atz with radius||z|| and
where the points are distributed according to a Poissont poihis the closed set of A.
process with intensit\p. The points of this point process are As the Poisson point process is stationary, we can use the fol
denotedY;);~o with [|Y;|| > ||Y;]| if i > j. The lower bound is lowing definition instead:
computed as follows:

+oo
P(Ipp <) (26) Ifop = > P&l (39)
R YieR2\b(0,[[z]))
= P<PP§11(|Y1||) SUZPP&ZOYiH) (27)
= Moreover, from the Slivhyak’s theorem [18], we have:
- PPl (HYlll)

E[<1_exp{ 1= T55 Posi <|m||>}> o {2 loar e ]

(29) Iz
] ~ex {L}E[ {i} | ]
= exp exp LAse .
Ppl(|l]) Ppl(|lz]) J =T
=S5 P vi>o T Lp-xis ma(mﬂ)w]- (30) (40)
We set, The bound turns out as follows:
i S Elexpd T=r _lg,
Ip,p = Z;Pp&l(HYiH)- (31) Pol(|[z]]) [ Fr<"
1= +oo
&Pl (Yil))
=& T (e {55000 2o
P(psp <) (32) i=1
1 1)y, 1 (41)
=P (I% <n)—E|ex 77#} ] + ||Y1<rv||) 1p4p<n]
(@ <) =€ o - Pt "
n—1Ip p =13 p [ ( {«Eil(lYill)}
= —E — 1 <E ex Lyv, >z Lrpei() v,
(33)
2 y — 151 + ﬂnmqn)} (42)
=P(I E |ex PP 1,
(Fpp < Zl l p{ Ppl(IYkII)} %P<”] N , _ o
(34) We use the probability generating function of the Poissantpo

process defined as:
By recurrence, we obtain far > 1:

R VLI e S ELI_IMY) =exp{—AP/RZ <1—vz<u>>du} (43)
k=1 -

Ppl([Yel)
35
(3) with
and whem — +o0,
+oo k1 §l(||U||)}
n—1 — T = — 1 u T 1 u +1 u T
P(Ipﬁp<n>1—ZE{exp{ WPYHP)} Pﬂp@] 36) " (w) eXP{ TQlz) [ LI L pegtui<n + Ljul<jel

We apply the Campbell formula [18]: (44)
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and we obtain:
ICE
E _P=P g
[GXP{Pquxn)} ~]

<en{ = [, (1€ (o {7}

X Ljjuf>flo| LPpgi(luly<n + ﬂ||u||<||z)])dU} (45)
= eXP{ —Ar /}RZ (1= Lpuj<pan)

L (||u
-k {exp{gl(ﬁ:g”))}ﬂmz(u><n] jlu>a5||dU} (46)
o] el El(IuI)}
—° p{ AP /Hu>m (1 E{e p{ L(|[=]])
X ﬂPpsZ<||u||><nDdU}- (47)

We obtain,

1—exp {25 (i —

l(H;II))}.

— Wul)
L= =l

o (] -
(48)

Putting all of these together and changing for polar coarigis,
we obtain:

+oo
n
P(I < >1 -2\ - —A\p2
(Ip»p <n) > ™ P/O eXp{ Pol() 7 7T

) /+OO 1-— eXp{—pip Z)Lw) - l(r))})wdw}rdr.

The upper bound on the CCDF is then:

PPTZZ( ) }

+oo 1 —expq——aL Ty — Tt
X exp{ —)\p27r/ (1 { Pr l<(lu())) d )>})wdw}rdr.
(50)
For Ip_, g, there is an inhibition ball

(1-

(49)

—+oo
P(IPAPZH)SQW)\P/ exp{—
0

1(r)

Bound on Ip_,g.
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Equation (44) can be written as:

(o [
=(v) ( p{uuxm

+ (L= Lju>fog Ljju=D ) >hp) )

}ﬂuuu>urnﬂ||u—D||>hp Lppei(full)<n

(53)
and (47)
= o { gty 2
: exp{ o /nu>m;||uD||>hp (1_
ot} oo

The upper bound ofp_, s CCDF is then:

n
P(Ip SZU)SAP/ exp{i}
- R2\b(D,hp) Ppl(flz|)
X exp{ — Ap/ <1
llul>llzll;lu—DlI>hp
!
l(”l”))})du}xdx.

(55)

Proof: Proof of Proposition 2

First, we compute the FER for a node at the origin and receiv-
ing a frame from a primary node at distan¢as described in
subsection II-C. We consider the FER for a transmission faom
primary node. Computations for the secondary network is/equ
alent. We use the definition and method developed in [20]:

FER

P(SINR < 0). (56)

The SIN R is the ratio of the power received from the transmit-
ter and the sum of the interference generated by the prinmaty a
secondary nodes plus noise. For a transmission from a Brimar
node, we get:

b(D, hp) where we do not consider the points. Therefore, com-

putations are similar tép_, p except that we consider the points
Formally, all the steps of the proof are the FE

in R2\b(D, hp).
same, but we add an indicator functieq ¢, (p»,) €qual tol if

Y, ¢ b(D, h,) and0 otherwise. It allows us to filter the points

in b(D, hp)
Equation (36) can be written as:

P(IP—>S <n)
k+1

-1
—1— E PSS
Z lexp{ TR

}ﬂf;i:fs<nﬂneb<mp>]
(51)
with

—+o0

Ips = ZPsz'l(||YiH)1lY,¢b(D,hp)-
ik

(52)

_ §Ppl(d)
=P (IS%P +Ilpsp+ W = 9) &7
=P (5 < %@(IS—W +Ipp+ W)) (58)

0
As we assumed thdg_, p and/p_, p Were independent we get
FER=1-E ,L]
- eXp Ppl(d) S—P

: [eX" {%@“’%H : [eX" { e

The two Laplace transforms fdg_, » andW are obtained from

-
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their distributions (log-normal fofs_, p). ForIp_, p, we get:

)

9 o0
—m;zﬁp@mmu)

= E

(61)

exp

Hexp{ et v} |- e

We use the probability generating function of the Poissantpo(21]

process, we get:

E {exp{%@IP%P}]
[ (1-efew{ iz rear o }] ) o)
69)

- Foo -0 [25]

B AP% 0 (1 F {exp { o) eI )}D rdr}[%]
(64)

B teo 0l(r)

= exp )\p27r 0 1) + 010r) rdr} (65)
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