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Interference and Throughput in Spectrum Sensing
Cognitive Radio Networks using Point Processes

Anthony Busson, Bijan Jabbari, Alireza Babaei, and Véronique Vèque

Abstract: Spectrum sensing is vital for secondary unlicensed nodes
to coexist and avoid interference with the primary licensedusers
in cognitive wireless networks. In this paper, we develop models
for bounding interference levels from secondary network tothe
primary nodes within a spectrum sensing framework. Insteadof
classical stochastic approaches where Poisson point processes are
used to model transmitters, we consider a more practical model
which takes into account the medium access control regulations
and where the secondary Poisson process is judiciously thinned in
two phases to avoid interference with the secondary as well as the
primary nodes. The resulting process will be a modified version
of the Matérn point process. For this model, we obtain bounds
for the complementary cumulative distribution function of inter-
ference and present simulation results which show the developed
analytical bounds are quite tight. Moreover, we use these bounds
to find the operation regions of the secondary network such that
the interference constraint is satisfied on receiving primary nodes.
We then obtain theoretical results on the primary and secondary
throughputs and find the throughput limits under the interfe rence
constraint.

Index Terms: Cognitive radio, performance evaluation, stochastic
geometry.

I. INTRODUCTION

Dynamic spectrum access and management provides an op-
portunity to use the limited radio frequency more efficiently.
This is irrefutably needed as there is a growing demand for
higher transmission rates and increased network throughput.
While this notion, in general, encompasses a variety of wire-
less systems, one important scenario of interest is the concept in
which the unlicensed users are allowed to access the spectrum
licensed to the incumbent users on a non-interfering or limited
interference basis. The practical solution requires wireless de-
vices with cognitive radio capability to share the bandwidth with
primary users.

Considerable research has been undertaken in the area of dy-
namic spectrum access and management and cognitive networks
(see for example, [1]–[5]). To implement such systems, various
approaches have been discussed that involve issues rangingfrom
spectrum opportunity identification and exploitation to medium
access control (MAC) protocol [6]. One important component
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of the cognitive radio technology is the spectrum sensing [7].
Spectrum sensing enables the secondary nodes to be perceptive
of the spectral activity of the primary users and thereby avoid
and manage their level of interference. Different approaches
have been proposed for spectrum sensing ranging from energy
detection [8] and cyclostationarity-based sensing to cooperative
spectrum sensing [7], [9].

What gives rise to such concepts to become realistic is man-
aging the level of interference being harmful to the incumbent
users. Therefore, an understanding of the characteristicsof in-
terference and its behavior is at the core of the problem of de-
termining the degree of bandwidth efficiency and hence useful
capacity to be used by secondary nodes. Given that the primary
and secondary wireless networks share the space and the spec-
trum, throughput in both of these networks is limited by not only
the intra-network interference, i.e., the interference among the
nodes of the same network, but also by the inter-network inter-
ference, i.e., the aggregate interference originated fromtrans-
mitting nodes in one network on the receiving nodes of the
other network [10]. On the other hand, due to the factors like
randomness in the locations of the primary and the secondary
nodes, the type of MAC layer protocols and the scheduling al-
gorithms used in these networks which determine the simultane-
ous transmitters, as well as the fading effect, the intra-network
and inter-network interference, and their cumulated effect are
random in nature. Therefore, statistical characterization of in-
terference is an important prerequisite for modeling and opti-
mization of throughput in the primary and secondary networks.
This is precisely our focus here and we develop analytical mod-
els and bounds for the level of interference in order to evaluate
the impact of secondary transmissions on the primary network
and determine the throughput.

In [11], the authors show that there is a fundamental trade-off
between sensing capability (a function of probability of detec-
tion in spectrum sensing) and achievable throughput (a function
of probability of false alarm in spectrum sensing) and obtains the
optimal sensing duration which maximizes the throughput inthe
secondary network under the constraint that the primary users
are sufficiently protected. Only a single point-to-point transmis-
sion link in the secondary network is considered and the effect of
interference among secondary nodes is ignored. [12] considers
the problem of maximizing the sum-throughput in the secondary
network subject to constraints on maximum interference at pri-
mary receivers. The network is assumed to be comprised of a
finite number of nodes and that nodes have perfect knowledge
of primary-secondary and secondary-secondary path gains.This
model does not consider the inherent uncertainty in path gains
due to random propagation effects and the randomness in the
spatial distribution of nodes. [13] considers interference model-
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ing in spectrum underlay cognitive wireless networks and inter-
ference is approximated as sum of normal and log-normal ran-
dom variables. In [10], considering a simple Gaussian model,
throughput in primary and secondary networks is optimized by
using the optimum transmission probability. In [14], the au-
thors present a cognitive radio system for which they propose
a power allocation strategy that optimizes throughput under in-
terference power constraints on the primary network. In [15]
and [16], the authors study interference distribution in cogni-
tive radio networks when interferers are distributed according to
a Poisson point process, and thus assuming that transmitterlo-
cations are independent of each other. But, it has been shown
e.g., [17] that spatial distribution of interferers plays an impor-
tant role in interference distribution. Shape and varianceof in-
terference distribution do not depend only on the point process
intensity, but is strongly linked to the spatial correlations be-
tween the points. For the same intensity of interferers, variance
of interference may vary from1 to 10 according to the con-
sidered point process [17], the worst variance being generated
by the Poisson point process. In cognitive radio networks, sec-
ondary nodes use a sensing mechanism to avoid harmful inter-
ference to primary nodes. Moreover, secondary nodes detectsig-
nal/interference from the current transmissions of the other sec-
ondary nodes. Consequently, interferers are not distributed inde-
pendently of each other, as with a Poisson point process, butthe
presence of a transmitter generates a spatial repulsion/inhibition
area in its surrounding. In this paper, we propose point processes
that aim to capture these correlations leading to a more accurate
modeling of interference in cognitive radio networks.

We consider secondary nodes to monitor individual transmis-
sions from primary nodes. Upon detecting no activities, they are
allowed to transmit. In this paper, using concepts from stochas-
tic geometry and the theory of point processes, we develop
models for bounding the complementary cumulative distribution
function (CCDF) of interference level from secondary nodesto
a primary node. We consider a practical model which takes into
account the MAC regulations and where the secondary Poisson
process is judiciously thinned in two phases to avoid interfer-
ence with the secondary as well as the primary nodes. The re-
sulting process will be a modified version of the Matérn point
process. We model the CCDF of interference level from sec-
ondary nodes to a primary node for this Matérn point process
representing secondary nodes. Interference and throughput es-
timations for primary and secondary nodes are of interest. We
use our obtained models to find the operation regions of the sec-
ondary network such that the interference constraint is satisfied
on receiving primary nodes. We then obtain theoretical results
on the primary and secondary throughputs and find the through-
put limits under interference constraint.

The remainder of this paper is organized as follows. We de-
scribe the model, i.e., interference definition and the two point
processes modeling primary and secondary interferers, in Sec-
tion II. We present results on interference distribution for these
point processes in Section III. Section IV considers the through-
put under the interference constraint. Numerical evaluations and
simulations are also provided to confirm the accuracy of the ob-
tained results in Section V. Section VI concludes the paper.

II. MODEL

We focus on the interference level at a receiver located at the
origin of the planeO = (0, 0) and at a given timet. Interfer-
ence is assumed to be the sum of signal strengths generated by
all the interferers transmitting at timet. We use the following
notations to denote interference from primary transmitters to a
primary receiver (IP→P ), from primary transmitters to a sec-
ondary receiver (IP→S), etc:

IP→P =

+∞
∑

i=1

PP ξil (‖Yi‖) andIS→P =

+∞
∑

i=1

PSζil (‖Xi‖) ,

(1)

IP→S =

+∞
∑

i=1

PP νil (‖Yi‖) andIS→S =

+∞
∑

i=1

PSβil (‖Xi‖)

(2)

where{ζi}, {ξi}, {νi}, and{βi} are independent and identically
distributed random variables representing fading,l (‖.‖) repre-
sents deterministic path loss (a decreasing function),PP andPS

are the transmit power from primary and secondary nodes, and
(Yi)i∈IN (respectively(Xi)i∈IN ) represent locations of the in-
terfering nodes in the primary (respectively in the secondary)
network. We assume that fading is Rayleigh. Consequently,
in the following we consider the random variables{ζi}, {ξi},
{νi}, and{βi} to be exponentially distributed with parameters
equal to1. For fading greater or lower than1 in average, we can
consider a lower (respectively greater) transmit power. Inother
words, the level of fading can be integrated in the transmitting
powerPS orPP .

It is obvious that according to (1) and (2), transmitter loca-
tion plays a crucial role on interference. Interference distribu-
tion strongly depends on the spatial distribution of the simul-
taneous transmitters, i.e.,(Xi)i∈IN and (Yi)i∈IN distributions.
Consequently, we consider two stationary point processesΦP

(ΦP = {Yi}i∈IN ) andΦS (ΦS = (Xi)i∈IN ) describing loca-
tions of the primary and the secondary nodes, respectively.Ba-
sically, a point process consists of a random sequence of points
distributed inIRd (See [18] or [19] for details). In the two next
subsections, we present the different point processes usedto
model transmitter locations.

A. Primary Nodes: Poisson

We considerΦP to be a Poisson point process distributed in
IR2 with intensityλP . A sample of this model is presented in
Fig. 1(a). For this model, we have a cognitive radio system inthe
TV band in mind, where the primary nodes are TV transmitters.
Therefore, primary node location does not depend on a sensing
algorithm but more on the TV antennas deployment.

B. Secondary Nodes: A Modified Version of the Matérn Point
Process

We assume that a secondary node listens to the medium be-
fore transmitting. If it detects the transmission of a framefrom
another secondary node or a primary node, it defers its own
transmission. We assume that a transmission is detected by a
node if the received signal strength from another node is greater
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(a) (b) (c)

Fig. 1. Sample of the initial point processes and selection of the Secondaries: (a) Primary (black) and secondary nodes (white) are Poisson, (b)
selection of the secondary nodes, and (c) primary and selected secondary nodes.

than a thresholdγ. We also consider a simplified deterministic
path loss and assume that the received signal strength isP · l(u)
whereu is the distance between the two nodes andP is the
transmission power (PP or PS). For a given value ofγ, there
is therefore a maximal distance for which a transmission is de-
tected. As this distance depends on the transmission power,we
consider two different detection distances.

The Matérn point process is suitable to model the transmitter
positions when using this medium access protocol. Basically, it
is formed by removing a subset of the points of a Poisson point
process in such a way that distances between all the pairs of re-
maining points are greater than a predefined constant (hS or hP

in our case). This model has already been used to represent such
networks in [20] and [21]. We propose a modified version of the
Matérn point process in order to take into account detection from
both primary and secondary nodes. We present below the classi-
cal Matérn point process, followed by a modified version which
suits the context of our problem.

B.1 Definition of Matérn Process

We consider a homogeneous Poisson point processΦ with
intensityλ. We associate with each pointx a random variable
m(x) independently and uniformly distributed in[0, 1]. We per-
form a dependent thinning of the Poisson process. We retain a
point x if and only if the points in the ballb(x, h) contains no
points with marks smaller thanm(x). Formally, the points of
the Matérn is the set

{x ∈ Φ| m(x) < m(y), ∀y ∈ Φ ∩ b(x, h)\x} .

The intensity λh of this process is known (see for in-
stance [18], page164) and is given by:

λh =
1− exp

{

−λπh2
}

πh2
. (3)

B.2 Our Model

We use a modified version of the Matérn point process as the
primary nodes do not apply the same rule to access the medium.
The model is as follows:

• Simultaneous transmitters of the primary network are dis-
tributed according to a Poisson point processΦP with inten-
sity λP .

• All the secondary nodes are distributed according to a Poisson
point processΦS with intensityλS .

• We consider a classical Matérn point process withΦS as the
underlying Poisson process and distance thresholdhS . It cor-
responds to a first thinning ofΦS by taking into account trans-
mission from secondary nodes.

• The Matérn point process is thinned a second time to take into
account the transmission from the primary nodes. If a point of
the Matérn is located at a distance less thanhP from a primary
transmitter, it is removed.
The intensity of the selected secondary nodes denoted byλ

′

S

is then given by:

λ
′

S = exp
{

−λPπh
2
P

}1− exp
{

−λSπh
2
S

}

πh2
S

. (4)

The computation of this intensity is straightforward. Intensity
of the classical Matérn is known (given by (3)). The difference
between the classical and the modified Matérn lies in the second
step where a point (a secondary node) is removed if there is a
point of the first Poisson point process (a primary node) at a dis-
tance less thanhP . A point selected after the first step will def-
initely be kept, if there is no point ofΦP at a distance less than
hP . This event occurs with probabilityexp

{

−λPπh
2
P

}

. Inten-
sity of the modified Matérn point process is thus the Matérnin-
tensity multiplied by the probability of having no primary node
lying at distance less thanhP of a secondary node. A sample of
this model and the way it is built is presented in Fig. 1:
• Fig. 1(a): Primary (black) and secondary nodes (white) are

distributed according to two independent Poisson point pro-
cesses.

• Fig. 1(b): Inhibition balls with radiushS are plotted around
the secondary nodes. Secondary nodes which are going to be
removed (due to the two successive thinning) are in grey. The
selected secondary nodes are white.

• Fig. 1(c): We keep only those secondary nodes which do not
have primary nodes within their inhibition ball and satisfythe
Matérn condition on the marks.
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Fig. 2. Primary and secondary interferers distribution when we compute interference at a receiver: (a) A node at (0, 0) is receiving data from a
primary transmitter at D = (d, 0). Primary interferers are distributed in IR2 according to a Poisson point process. Secondary interferers are
distributed according to a modified Matérn in IR2\b(D, hP ), (b) a node at (0, 0) is receiving data from a secondary transmitter at D = (d, 0).
Primary interferers are distributed according to Poisson point process in IR2\b(D, hP ). Secondary interferers are distributed according to the
modified Matérn in IR2\b(D, hS).

C. Scenario

We consider two different cases for interference distributions.
These are when the receiver 1) receives data from primary node
and 2) receives data from secondary node. Computations differ
for these two cases.

C.1 Interference at a Primary Receiver

We assume that the receiver is located at the origin of the
plane and receives a frame from a primary transmitter located
at D = (d, 0) (at distanced). Since this node is transmitting
to the receiver, we do not take into account the signal strength
from this transmitter in the interference computation. As pri-
mary nodes are distributed according to a Poisson point process,
location of the other primary transmitters (the interferers) is still
a Poisson point process (see Slyvniack’s theorem in [18]).IP→P

is then the sum of the signal from primary transmitters. They
are distributed as a Poisson point process inIR2. But, secondary
nodes are dependent on primary transmitters. According to our
model, we cannot have a secondary node lying at a distance less
thanhP from a primary node. Consequently, when we consider
interference from secondary nodes, we shall assume that they
are distributed inIR2\b(D,hP ) whereb(D,hP ) is a ball cen-
tered atD with radiushP . IS→P is then the sum of the signal
from transmitters distributed as a modified Matérn point process
in IR2\b(D,hP ). This scenario is shown in Fig. 2(a).

C.2 Interference at a Secondary Receiver

We assume that the receiver is located at the origin of the
plane and receives a frame from a secondary transmitter lo-
cated atD = (d, 0). We do not take into account the sig-
nal strength from this transmitter in the interference compu-
tation. As a primary transmitter cannot be at a distance less
thanhP from a secondary transmitter, primary interferers fol-
lows a Poisson point process inIR2\b(D,hP ). IP→S is the sum

of the signal from transmitters distributed as a Poisson point
process inIR2\b(D,hP ). Secondary nodes cannot lie at a dis-
tance less thanhS from each other. Therefore, when we con-
sider interference from secondary nodes (IS→S) we shall as-
sume that they are distributed as a modified Matérn point pro-
cess inIR2\b(D,hS). This scenario is shown in Fig. 2(b).

III. CCDF OF INTERFERENCE

In cognitive radio networks, secondary nodes must keep a
low interference level in order to ensure that performance of
the primary network is not deteriorated. The tolerable interfer-
ence level can be expressed through different quantities. This al-
lowance may be given through the probability that interference
does not exceed a certain threshold:

P(IS→P > η) < ǫ. (5)

Conditions may also hold for the signal to interference plus
noise ratio (SINR). This SINR can be evaluated for a primary re-
ceiver on the edge of the keep-out region or the protected region.
Given a path-loss function, and a worst-case fading and noise,
we can deduce the maximum interference from secondary nodes
which ensures a SINR greater than this threshold. The admissi-
ble interference can also be deduced from the classical quantities
used in cognitive radio literature [22], [23]:PMD (probability
of miss detection) andPFA (probability of false alarm). Given a
fixed protected regionRP , where secondary nodes are not sup-
posed to be active, the probability of miss detection is the prob-
ability for a secondary node to detect the medium free whereas
this node is within this protected region. This may happen when
a secondary node estimates the energy in the targeted frequency
band and compares it to a detection threshold [24], [25]. A very
low signal level may be measured (due to a significant level of
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fading for instance) whereas the node is in fact within the pro-
tected region. The false alarm probability is the opposite:This
corresponds to the probability that the secondary node is out-
side the protected region whereas its sensing algorithm indicates
that it is inside. These two probabilities are formally defined as
follows. If Detection = 0 (respectively1) when the sensing
algorithm of the secondary node considers that it is outside(re-
spectively inside) the protected region:

PMD = P (Detection = 0 | This node is in the protected region),

PFA = P (Detection = 1 | This node is not in the protected region).

The threshold used by the sensing algorithm at the secondary
nodes to detect medium free/busy may be computed in order to
keep these two probabilities under a certain value (0.1 for in-
stance as in [22]). These quantities are generally computedtak-
ing into account only noise and fading [24], [25]. A more accu-
rate computation should also involved interference from primary
and secondary nodes. All these quantities (In (5), SINR,PMD

or PFA) require the knowledge of the interference distribution,
in particular the CCDF. For the proposed models, we develop
bounds and approximations on these probabilities to determine
the parameters for the secondary network for which conditions
on interference on the primary network is met. CCDF forIP→P

and IS→P are presented in subsection III-A and III-B, from
which we deducePMD andPFA in subsection III-C.

A. Interference Generated by the Primary Nodes (Poisson)

We propose a lower bound on the CDF of the interference
generated by the primary nodes (IP→P andIP→S). We then
deduce an upper bound on the CCDF. We also propose an ap-
proximation which is easier to compute than this bound.

Proposition 1: The lower bound ofIP→P is:

P(IP→P ≤ η) ≥ 1− 2πλP

∫ +∞

0
exp

{

−
η

PP l(r)

}

exp

{

− λP 2π

∫ +∞

r



1−
1− exp

{

− η
PP

(

1
l(w)

− 1
l(r)

)}

1− l(w)
l(r)



wdw

}

rdr.

(6)

The upper bound on the CCDF is then:

P (IP→P ≥ η) ≤ 2πλP

∫ +∞

0
exp

{

−
η

PP l(r)

}

exp

{

− λP 2π

∫ +∞

r

(

1−
1− exp

{

− η
PP

(

1
l(w)

− 1
l(r)

)}

1−
l(w)
l(r)

)

wdw

}

rdr.

(7)

For IP→S , we obtain

P(IP→S ≥ η) ≤ λP

∫

IR2\b(D,hP )

exp

{

−
η

PP l(‖x‖)

}

× exp

{

− λP

∫

‖u‖>‖x‖;‖u−D‖>hP

(

1

−
1− exp

{

− η
PP

(

1
l(‖u‖) −

1
l(‖x‖)

)}

1− l(‖u‖)
l(‖x‖)

)

du

}

xdx. (8)

The proof is given in the Appendix. The approximation used
to evaluate the CCDF ofIP→P is found by taking the second
integral of (7) equal to0. It is a good approximation whenη or
λP is small:

P(IP→P ≥ η) ≈ 2πλP

∫ +∞

0

exp

{

−
η

PP l(r)

}

rdr, (9)

P(IP→S ≥ η) ≈ λP

∫

IR2\b(D,hP )

exp

{

−
η

PP l(‖x‖)

}

dx.

(10)

B. Interference Generated by the Secondary Nodes (Modified
Matern)

We consider the modified version of the Matérn point process
to model the secondary nodes (presented in subsection II-B).
We compute interference for a node located at the origin of the
planeO = (0, 0). This node receives data from a transmitter
located atD = (d, 0). As explained in subsection II-C, there
is an inhibition ball centered atD. This ball isb(D,hP ) when
the transmitter atD is a primary node, andb(D,hS) otherwise.
From the intensity of the modified Matérn (see (4)), it is easy
to find an upper bound on the interference generated by the sec-
ondary nodes. It is found by using the Markov inequality:

P(IS→P > η) ≤
E [IS→P ]

η
. (11)

Since the modified Matérn is stationary, we can apply Campbell
formula (see [18] page 104) to compute mean interference (with
λ

′

S given by (4)):

E [IS→P ] = λ
′

SPS

∫

IR2\b(D,hP )

l (‖u‖)du, (12)

E [IS→S ] = λ
′

SPS

∫

IR2\b(D,hS)

l (‖u‖)du. (13)

The bound given by (11) being not tight, we propose an ap-
proximation to compute this CCDF instead. It has been shown
through a statistical study of interference [17], that interference
generated by a Matérn point process follows a log-normal dis-
tribution. In order to determine the two parameters of this distri-
bution, we use mean and variance of interference. The mean in-
terference is given by (12). The second moment of interference
generated by a Matérn point process has been computed in [26].
We obtain a variant of this second moment for our model. Let us
defineν(A) the Lebesgue measure ofA (area ofA) for A ⊂ IR2.
We have:
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E
[

I2S→P

]

= λ
′

S

∫

IR2\b(D,hP )

P 2
SE
[

ζ2
]

l(‖x‖)2dx

+
2P 2

S

πh2
S

∫

IR2\b(D,hP )

∫

IR2\(b(x,hS)∪b(D,hP ))

E[ζ1ζ2]

×

[

1− exp {−λSν(b(x, hS) ∪ b(y, hS))}

ν(b(x, hS) ∪ b(y, hS))

−
exp

{

−λSπh
2
S

}

− exp {−λSν(b(x, hS) ∪ b(y, hS))}

ν(b(x, hS) ∪ b(y, hS))− πh2
s

]

× exp {−λP ν(b(x, hP ) ∪ b(y, hP ))}l (‖x‖) l (‖y‖)dydx
(14)

with E[ζ2] = 2 and E[ζ1ζ2] = 1. The proof is straight-
forward with regard to the one presented in Proposition 3
of [26]. It suffices to weight the probability for two points to
belong to the Matérn point process by the probability of hav-
ing no point ofΦP (a primary node) at a distance less than
hP (from these two points). In the equation above, this prob-
ability is included inλ

′

S for the first term, and is equal to
exp {−λP ν(b(x, hP ) ∪ b(y, hP ))} for the second term. The ap-
proximation is thenIS→P  log-normal(m,σ2) wherem and
σ2 correspond to mean and variance of this log-normal distri-
bution: m is given by (12) andσ2 = E

[

I2S→P

]

− m2 with
E
[

I2S→P

]

given by (14).

For IS→S , we use the same approximation. Parameters of
the log-normal distribution are given by (13) for the mean and
(14) for E

[

I2S→S

]

where we have to substituteb(D,hP ) by
b(D,hS).

C. Probability of Miss Detection and False Alarm

In order to compare the classicalPFA andPMD probabilities
with and without interference considerations, we propose an an-
alytical derivation of these two quantities. We assume thatthe
protected region is a ball centered at a primary transmitterlo-
cated atD = (d, 0) and with radiusRP . RP will be equal to
hp (the inhibition radius around the primary nodes) in all our
numerical evaluations. A secondary node, located at the origin,
senses the medium to determine if it is in the protected region
or not. The decision is made by comparing the sensed energy
level with a specific thresholdγ. The received signal strength at
this secondary node can be estimated as the sum of interference
from primary and secondary nodes, plus noise, plus the signal
strength from the primary transmitter. Interference at thesens-
ing node is the same as interference at a primary node described
in subsection II-C.1. Consequently, interference at the sensing
node is denoted asIP→P + IS→P in the next formulas.

PMD is the probability that the signal strength is less thanγ
whereasd < RP andPFA is the probability that it is greater
thanγ whereasd ≥ RP . In the following equations, we will
assume that the noiseW is constant. To obtain formula with a
random noise, it suffices to condition the final results with the
distribution ofW . We obtain,

PMD = P(IS→P + IP→P + PP ξl(d) +W < γ) with d < RP ,
(15)

PFA = P(IS→P + IP→P + PP ξl(d) +W > γ) with d ≥ RP .
(16)

For a constant noiseW , we obtain:

PMD = P(IS→P + IP→P + PP ξl(d) +W < γ)

= P(IP→P < γ −W − IS→P − PP ξl(d))

=

∫
γ−W
PP l(d)

0

∫ γ−W−PP ul(d)

0
P (IP→P < γ −W − s− PPul(d))

fLogN (s)ds exp {−u}du. (17)

The last equation has been obtained by conditioning by
the distribution ofξ and IS→P for which we assume that
it follows a log-normal distribution.fLogN (.) is the pdf of
this log-normal distribution. The two parametersµ and σ of
this distribution can be computed from mean and variance of
IS→P (E[IS→P ] = exp {µ+ σ2

2 } and V ariance(IS→P ) =
(exp {σ2} − 1) exp {2µ+ σ2}). Mean and variance are given
by (12) and (14) from which we deduce the two parametersσ
andµ. A random noise can also be considered, it adds an in-
tegral function of the noise distribution in the formula above.
P(IP→P < γ −W − IS→P − PPul(d)) is estimated from (6).
Also, we assumed thatIP→P andIS→P are independent.

Generally, computations of these probabilities neglect inter-
ference from primary nodes. It simplifies this equation (with
IP→P = 0):

PMD = P(IS→P + PP ξl(d) +W < γ)

= P(IS→P < γ −W − PP ξl(d)) . (18)

If we condition byξ and assume thatW is constant (with
γ > W ), we obtain:

PMD =

∫
γ−W

PP l(d)

0

P(IS→P < γ −W − PPul(d)) exp {−u}du

=

∫
γ−W

PP l(d)

0

1

2
erfc

(

−
ln(γ −W − PPul(d))− µ

2σ

)

× exp {−u}du. (19)

Computations ofPFA is the same. It suffices to takePFA =
1− PMD but withd ≥ RP .

IV. THROUGHPUT ESTIMATION

In this section, we focus on the obtainable throughput by both
primary and secondary networks. This throughput is defined as
the mean number of frames that are correctly received per sec-
ond in a unit square area. We estimate the throughput as follows:

T = λ(1 − FER)
1

tf
(20)

whereλ is the intensity of the simultaneous transmitters,tf is
the mean time required to send a frame, andFER is the frame
error rate. We compute this quantity for the model that we have
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developed: primary nodes are distributed according to a Poisson
point process and secondary nodes are distributed according to
our modified Matérn process. For theFERwe use the definition
and method developed in [20]:

FER = P(SINR < θ) . (21)

In the proposition below, we give the throughput for the pri-
mary and secondary networks. We consider theFER for a node
which is located at the origin and is receiving a frame from a
node at distanced. It corresponds to scenarios described in sub-
sections II-C.1 and II-C.2 where the transmitting node atD is
a primary node (respectively secondary node). First, we find
the FER for the modified Matérn point process. We consider
FER for a transmission from a primary node. Computations
for the secondary network is equivalent. Then, we deduce the
throughput from (20). We assume that the noise is an indepen-
dent random variableW . Let ξ an exponential random variable
with parameter1, we get:

FER = P(SINR < θ) = P

(

PP ξl(d)

W + IS→P + IP→P

< θ

)

= P

(

ξ <
θ(IP→P + IS→P +W )

PP l(d)

)

= 1− E

[

exp

{

−
θ

PP l(d)
IS→P

}

exp

{

−
θ

PP l(d)
IP→P

}]

× E

[

exp

{

−
θ

PP l(d)
W

}]

.

(22)

It is not possible to compute this quantity analytically as
IP→P andIS→P are dependent and the joint distribution is un-
known. As an approximation, we assume thatIS→P andIP→P

are independent. We will show through simulations that thisas-
sumption does not bias the results. Using this assumption, we
obtain:

FER = 1− E

[

exp

{

−
θ

PP l(d)
IS→P

}]

× E

[

exp

{

−
θ

PP l(d)
IP→P

}]

E

[

exp

{

−
θ

PP l(d)
W

}]

.

(23)

FER can thus be expressed with regard to the Laplace trans-
forms ofW , IS→P andIP→P . We have shown thatIS→P can
be approximated by a log-normal distribution, so we use the
Laplace transform of the log-normal distribution to compute
E [exp {−θIS→P /PP l(d)}]. Laplace transform of the noise is
also directly computable from its distribution. The expression
for IP→P is given in the proof of Proposition 2.

Proposition 2: Approximation of throughputs for primary
and secondary networks are:

Tprimary = λP exp

{

−λP 2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}

× E

[

exp

{

−
θ

PP l(d)
IS→P

}]

E

[

exp

{

−
θ

PP l(d)
W

}]

1

tf
,

(24)

Tsecondary = λ
′

S exp

{

−λP

∫

IR2\b(D,hp)

θPP l(|x|)

PS l(d) + θPP l(|x|)
dx

}

× E

[

exp

{

−
θ

PS l(d)
IS→S

}]

E

[

exp

{

−
θ

PS l(d)
W

}]

1

tf
.

(25)

whereλ
′

S is the intensity of the Matérn point process given by
(4) and whereIS→P is supposed to follow a log-normal distri-
bution with mean and variance given by (12) and (14). In (12)
and (14),b(DP , hP ) must be replaced byb(DS , hS) in the first
integral when we consider theFER for the secondary nodes. In
order to obtain theFER in the secondary network, it suffices to
substitutePP l(d) byPS l(d) in (22).
The proof is given in the Appendix.

V. NUMERICAL EVALUATIONS AND SIMULATIONS

In this section, we present the simulation results. We im-
plemented a simulator coded in C. This software simulates the
cognitive radio network: Poisson for the primary nodes and the
modified Matérn for secondary nodes. It aims to estimate theac-
curacy of approximations we made: Log-normal distributionfor
IS→P and the independence betweenIS→P andIP→P . Also,
it is used to compare the performances of the cognitive radio
network when interference is taken into account with a scenario
without interference.

We consider two different contexts of applications for cogni-
tive radio. Scenarios and results for these two contexts arepre-
sented in the two next sections.

A. Cognitive Radio in the Television Bands

We consider the classical scenario targeted by the IEEE
802.22 standard [27]. It describes cognitive radio to operate in
the television bands. It allows a secondary node to opportunisti-
cally access the TV bands. The sensing algorithm used by sec-
ondary nodes to detect an activity on this license band and its
associated parameters is thus crucial to guarantee the absence
of a television signal and maximize the usage of this spectrum.
This problem has already been addressed in [22] and [24], but
all these studies do not take into account interference level from
secondary nodes in the sensing algorithm. For this scenario, we
show the impact of interference from secondary nodes on the di-
mensioning of IEEE 802.22 sensing algorithm. The simulation
parameters are similar to the ones used in [22] and [24]. We
assume that a TV station is transmitting at1 MW (90 dBm)
in the UHF at615 MHz. We consider the path-loss function
and shadowing model proposed in the ITU-R 1546 recommen-
dation [28]. The path-loss function plotted in Fig. 3 is a contin-
uous piecewise polynomial function. The exponent parameters
is 3 for distanced less than1 km, 2.7 for d ≤ 30 km, 7.65
for d ≤ 100 km, and8.38 for greater distances. The transmit-
ting power for secondary nodes is36 dBm. It corresponds to
the maximum power allowed by the IEEE 802.22 standard. The
distance between the TV antenna and the primary receiver for
which we compute SNR and SINR is134.2 km. This distance
equals to the protection contour computed in [22] and [24]. It
corresponds to the distance at which all TV receivers not re-
ceive harmful interference (it only takes into account noise, and
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Fig. 3. Path-loss function.

guarantees that the ratio between received signal and noiseis at
least23 dB). Standard deviation of the fading is equal to5.5 dB.
It has been set according to the ITU-R 1546 recommendation.
Values ofhS andhP correspond to the distance at which the
signal from a secondary (respectively primary) node is equal to
−116 dBm. It is the threshold given in the IEEE 802.22 stan-
dard. We chose a very small intensity for the primary nodes,
because interference from primary to primary nodes was con-
sidered more or less negligible, at least compare to secondary
interference. Indeed, TV antennas has been planned in order
to keep a low level of interference between them. Instead, we
wanted to highlight the impact of interference from secondary
nodes (for which there are 10,000 potential transmitters: 1for
10 × 10 km2) on primary communications. The other parame-
ters are given in Table 1.

A.1 Interference Distribution

In Figs. 4(a) and 4(b), we plotted interference CCDF at a
primary receiver where interference is generated by primary
and secondary nodes. The theoretical curves correspond to (7)
and (9) in Fig. 4(a). In Fig. 4(b), we plotted interference distri-
bution generated by secondary nodes (IS→P ). It compares sim-
ulations to the approximation based on a log-normal distribu-
tion where parameters are set according to mean and variance
of IS→P . It appears that the different assumptions made in the
model do not impact the results, and the proposed theoretical
distribution of interference matches perfectly to the simulated
ones.

A.2 SNR and SINR Distributions

In Fig. 5 we plotted the CCDF of SNR and SINR for the pri-
mary receiver. The CCDF of SINR is given by (22), and the SNR
is not given here but it is trivial as this quantity depends only
on the fading distribution (the noise was assumed constant for
these simulations). Simulations fit perfectly well to the theoret-
ical curves. Also, we observe that there is significant difference
between SNR and SINR distributions. Therefore, it proves that
the dimensioning of the sensing algorithm cannot just take into
account the SNR, but has to consider interference.
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Fig. 4. CCDF of IP→P and IS→P . Comparison between theoretical
results and simulations: (a) CCDF of IP→P for the Poisson point
process and the upper bound and (b) CCDF of IS→P for the modified
Matérn point process and the approximation from log-normal.

A.3 Probability of False Alarm and Miss Detection

In order to evaluate the impact of interference on perfor-
mances, we consider the two classical quantitiesPFA andPMD

as presented in subsection III-C. Theoretical curves are com-
puted according to (19) and its complementary (PFA = 1 −
PMD). The thresholdγ is set to−93.12 dBm. It corresponds
to the signal strength from the TV transmitter on the protec-
tion contour (at134.2 km) without considering noise and in-
terference. hS andhP are set accordingly (hS = 22.3 km,
hP = 134.2 km).

In Fig. 6(a), we plotted the probabilityPMD with regard to
the distance between the primary receiver and the TV transmit-
ter. It gives the probability for a secondary node to miss the
detection of the TV transmitter. The limit of the protected re-
gion is represented with a vertical line at134.2 km. In order to
compare to the classical approach where only noise and fading
is considered, we plotted this probability without interference
(Simulations - without interferencein the figure). We observe
that all the curves fit until100 km, then interference from sec-



BUSSONet al.:INTERFERENCE AND THROUGHPUT IN SPECTRUM SENSING... 75

Simulation parameters Numerical values

Emission Power for primary nodes 90 dBm
Emission Power for secondary nodes 36 dBm

Standard deviation of fading 5.5 dB
primary intensity (λP ) 1.27e−6 (1 node in500× 500 km2 in average)

secondary intensity (λS) 0.003183 (1 node in10× 10 km2 in average)
Distance between the primary receiver and its transmitter 134.2 km (D = (134.2, 0.0))
Inhibition ball between primary and secondary nodes (hP ) 236 km

Inhibition ball between secondary and secondary nodes (hS) 50 km
Noise −99.2 dBm

Observation window 1, 000× 1, 000 km2

Number of samples 200, 000

Table 1. Simulation parameters for the IEEE 802.22 scenario.
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Fig. 5. CCDF of SNR and SINR.

ondary nodes increases the energy level in the TV band making
the detection easier. For the chosen parameters, there is signif-
icant difference for the values ofPMD with and without inter-
ference. For the probability of false alarm plotted in Fig. 6(b),
results have to be considered for distance greater than134.2 km.
For these distances, interference from secondary nodes is often
above the detection threshold leading to a greaterPFA with re-
gard to the case where interference is not taken into account.
Therefore, secondary nodes detect a busy medium. However, it
cannot be considered as a false alarm as the medium is used by
secondary nodes. The computation ofPFA with interference is
thus questionable.

B. Data Network

In this second scenario we consider a more original network
(with respect to the cognitive radio literature). We wantedto es-
timate the gain of cognitive radio in a wireless data networks.
We assume that a frequency band has been licensed for a wire-
less data network. Primary nodes use this frequency band to
exchange frames in an asynchronous manner. Secondary nodes
can use this band without disturbing primary transmissions. Sec-
ondary nodes behave as in the previous scenario. They sense the
medium to evaluate the energy and transmit a frame if this en-
ergy is below a predefined threshold. The theoretical model is
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Fig. 6. Probability of miss detection and false alarm: (a) Probability of
miss detection and (b) probability of false alarm.

the same, only the parameters change. They are given in Table2,
and are close to the one used in wireless data network (IEEE
802.11a to be precise). We focus on the throughput of primary
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Simulation parameters Numerical values

Path-loss function l(u) = min (1, (β/4πu)
α
)

β 0.346 m (wavelength)
α 3.0

Emission power for primary nodes 40mW
Emission power for secondary nodes 40mW

Primary intensity (λP ) 0.00005 (1 node in140× 140m2 in average)
Secondary intensity (λS) 0.001 (1 node in33× 33m2 in average)

Inhibition ball between primary and secondary nodes (hP ) 50m
Inhibition ball between secondary and secondary nodes (hS) 50m

Observation window 100× 100 km2

Number of samples 1, 000, 000

Table 2. Simulation parameters for the data network.
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and secondary networks. We want to determine the best thresh-
olds (ǫ, η) on the condition on interference given by (5) which
maximizes secondary throughput without impacting throughput
in the primary network.

For a given value ofǫ, we use the bound and approximation
developed in Section III to determine parameters of the sec-
ondary network in such a way that transmissions from secondary
nodes satisfy the condition on interference. In Fig. 7, we vary η
of (5) and we observe the throughput under this constraint. For

this figure, the path-loss isl(u) = min
((

β
4πu

)α

, 1
)

with

β = 0.346 m (wavelength) andα = 3. The other parame-
ters areλP = 0.00005, λS = 0.001, PS = PP = 40mW , and
θ = 10. The distance between receiver and transmitter isd = 10
meters.hS andhP are computed according to the method de-
scribed in subsections III-A and III-B.ǫ = 5.0e − 02. η varies
(η andǫ are defined in (5)). We considered5, 000 samples. We
also performed simulations varyingǫ rather thanη. It led to
the same behavior, and is consequently not shown in this pa-
per. In this figure, we can observe that throughput of the sec-
ondary network forms a peak. This peak is due to the following
phenomena. Whenη increases, the intensity of the simultane-
ous secondary transmitters increases, since the interference con-
straint becomes looser. There are, therefore, more transmitters
and more frames received. When this intensity becomes high,

interference generated by secondary nodes becomes significant
increasing theFERand decreasing the throughput. Throughput
of the primary network is more regular. It is not impacted by
secondary node transmissions untilη reaches a threshold (ap-
proximatelyη = 6.0e−8). For this model,η (and consequently
γ, hS , andhP ) should be chosen close to this threshold. It offers
a good throughput to the secondary network without penalizing
throughput of the primary network.

A consistent technique to compute the thresholds(η, ǫ) is to
set a tolerable reduction of primary throughput due to secondary
interference. The pair(η, ǫ) can be computed in such a way
that the primary throughput ratio (throughput with interference
over throughput without interference) is greater than a prede-
fined threshold. This ratio is easily computable. It sufficesto
compute the throughput given by (24) in Proposition 2 to con-
sider the throughput with secondary interference, and the same
formula with IS→P = 0 to obtain the throughput without in-
terference. Unfortunately, these equations cannot be handled to
obtain a closed form for(η, ǫ), and a numerical calculation must
be performed.

VI. CONCLUSION

Obtaining interference distribution and throughput for pri-
mary and secondary nodes in a cognitive radio network is
of considerable interest. We proposed a modified version of
the Matérn point process to model accurately interferer loca-
tions. Our model takes into account the spatial correlationbe-
tween primary and secondary nodes, as well as between sec-
ondary nodes. This spatial correlation models the sensing mech-
anism performed by the secondary nodes to detect transmis-
sion in progress from primary or secondary nodes. We derived
closed formulas and bounds for the interference distribution and
throughputs for both primary and secondary networks. Numeri-
cal results show that interference plays an important role on the
cognitive radio network performance. In particular, the proba-
bility of miss detection is overestimated when interference is not
taken into account, whereas probability of false alarm is under-
estimated. Thus, accurate interference distribution is required to
estimate properly the different threshold used by the secondary
nodes to decide if they can transmit without disturbing primary
communications. We have also shown that secondary nodes may
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have a considerable throughput without penalizing primaryper-
formances. The proposed analytical formulas for throughput and
interference can be used to obtain operational secondariespa-
rameters. They can be optimized to generate a low level of in-
terference on primary nodes leading to a negligible increase
on FER, or equivalently a negligible reduction of throughput,
whereas optimizing throughput of the secondary network.

Appendix

Proof: Proof of Proposition 1. We distinguish two casesa)
the bound onIP→P , andb) the bound onIP→S .

Bound on IP→P . First, we compute the bound forIP→P

where the points are distributed according to a Poisson point
process with intensityλP . The points of this point process are
denoted(Yi)i>0 with ‖Yi‖ ≥ ‖Yj‖ if i > j. The lower bound is
computed as follows:

P(IP→P ≤ η) (26)

= P

(

PP ξ1l (‖Y1‖) ≤ η −

+∞
∑

i=2

PP ξil (‖Yi‖)

)

(27)

= P

(

ξ1 ≤
η −

∑+∞
i=2 PP ξil (‖Yi‖)

PP l (‖Y1‖)

)

(28)

= E

[

(

1− exp

{

−
η −

∑+∞
i=2 PP ξil (‖Yi‖)

PP l (‖Y1‖)

})

(29)

× 1lη−
∑+∞

i=2
PPξi l(‖Yi‖)>0 + 1lη−

∑+∞

i=2
PPξi l(‖Yi‖)≤0

]

. (30)

We set,

IkP→P =

+∞
∑

i=k

PP ξil (‖Yi‖) . (31)

P(IP→P ≤ η) (32)

= P
(

I2P→P ≤ η
)

− E

[

exp

{

−
η − I2P→P

PP l (‖Y1‖)

}

1lI 2
P→P

<η

]

= P

(

ξ2 ≤
η − I3P→P

PP l (‖Y2‖)

)

− E

[

exp

{

−
η − I2P→P

PP l (‖Y1‖)

}

1lI 2
P→P

<η

]

(33)

= P
(

I3P→P ≤ η
)

−

2
∑

k=1

E

[

exp

{

−
η − Ik+1

P→P

PP l (‖Yk‖)

}

1l
I
k+1

P→P
<η

]

.

(34)

By recurrence, we obtain forn > 1:

P (IP→P ≤ η) = P
(

In
P→P ≤ η

)

−

n−1
∑

k=1

E

[

exp

{

−
η − Ik+1

S→P

PP l (‖Yk‖)

}

1l
I
k+1
P→P

<η

]

(35)

and whenn → +∞,

P(IP→P ≤ η) = 1−

+∞
∑

k=1

E

[

exp

{

−
η − Ik+1

P→P

PP l (‖Yk‖)

}

1l
I
k+1
P→P

<η

]

. (36)

We apply the Campbell formula [18]:

P(IP→P ≤ η) = 1− λP

∫

IR2
E0

[

exp

{

−
η − IxP→P

PP l (‖x‖)

}

1lI x
P→P

<η

]

dx

(37)

whereE0[.] is the expectation under Palm measure [18], [29]
and

IxP→P =
+∞
∑

Yi∈IR2\b(−x,‖x‖)

PP ξil (‖Yi‖) (38)

whereb(−x, ‖x‖) is the ball centered at−x with radius‖x‖ and
A is the closed set of A.

As the Poisson point process is stationary, we can use the fol-
lowing definition instead:

IxP→P =

+∞
∑

Yi∈IR2\b(0,‖x‖)

PP ξil (‖Yi‖) . (39)

Moreover, from the Slivnyak’s theorem [18], we have:

E0

[

exp

{

−
η − IxP→P

PP l (‖x‖)

}

1lI x
P→P

<η

]

= exp

{

−
η

PP l (‖x‖)

}

E

[

exp

{

IxP→P

PP l (‖x‖)

}

1lI x
P→P

<η

]

.

(40)

The bound turns out as follows:

E

[

exp

{

IxP→P

PP l (‖x‖)

}

1lI x
P→P

<η

]

= E

[+∞
∏

i=1

(

exp

{

ξiPP l (‖Yi‖)

PP l (‖x‖)

}

1l‖Yi‖>‖x‖

+ 1l‖Yi‖≤‖x‖

)

1lI x
P→P

<η

]

(41)

≤ E

[+∞
∏

i=1

(

exp

{

ξil (‖Yi‖)

l (‖x‖)

}

1l‖Yi‖>‖x‖1lPPξi l(‖Yi‖)<η

+ 1l‖Yi‖≤‖x‖

)]

. (42)

We use the probability generating function of the Poisson point
process defined as:

E

[

n
∏

i=1

vx(Yi)

]

= exp

{

−λP

∫

IR2

(1− vx(u)) du

}

(43)

with

vx(u) = exp

{

ξl (‖u‖)

l (‖x‖)

}

1l‖u‖>‖x‖1lPPξl(‖u‖)<η + 1l‖u‖≤‖x‖

(44)
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and we obtain:

E

[

exp

{

IxP→P

PP l (‖x‖)

}

1lI x
P→P

<η

]

≤ exp

{

− λP

∫

IR2

(

1− E

[(

exp

{

ξl (‖u‖)

l (‖x‖)

}

× 1l‖u‖>‖x‖1lPPξl(‖u‖)<η + 1l‖u‖≤‖x‖

)])

du

}

(45)

= exp

{

− λP

∫

IR2

(

1− 1l‖u‖≤‖x‖

)

− E

[

exp

{

ξl (‖u‖)

l (‖x‖)

}

1lPPξl(‖u‖)<η

]

1l‖u‖>‖x‖du

}

(46)

= exp

{

− λP

∫

‖u‖>‖x‖

(

1− E

[

exp

{

ξl (‖u‖)

l (‖x‖)

}

× 1lPPξl(‖u‖)<η

])

du

}

. (47)

We obtain,

E

[

exp

{

ξl (‖u‖)

l (‖x‖)

}

1lPPξl(‖u‖)<η

]

=
1− exp

{

− η
PP

(

1
l(‖u‖)

− 1
l(‖x‖)

)}

1−
l(‖u‖)
l(‖x‖)

.

(48)

Putting all of these together and changing for polar coordinates,
we obtain:

P(IP→P ≤ η) ≥ 1− 2πλP

∫ +∞

0

exp

{

−
η

PP l(r)
− λP 2π

×

∫ +∞

r

(

1−
1− exp

{

− η
PP

(

1
l(w) −

1
l(r)

)}

1− l(w)
l(r)

)

wdw

}

rdr.

(49)

The upper bound on the CCDF is then:

P (IP→P ≥ η) ≤ 2πλP

∫ +∞

0
exp

{

−
η

PP l(r)

}

× exp

{

− λP2π

∫ +∞

r

(

1−
1− exp

{

− η
PP

(

1
l(w)

− 1
l(r)

)}

1−
l(w)
l(r)

)

wdw

}

rdr .

(50)

Bound on IP→S . For IP→S , there is an inhibition ball
b(D,hP ) where we do not consider the points. Therefore, com-
putations are similar toIP→P except that we consider the points
in IR2\b(D,hP ). Formally, all the steps of the proof are the
same, but we add an indicator function1lYi /∈b(D,hp) equal to1 if
Yi /∈ b(D , hp) and0 otherwise. It allows us to filter the points
in b(D,hP ).

Equation (36) can be written as:

P(IP→S ≤ η)

= 1−

+∞
∑

k=1

E

[

exp

{

−
η − Ik+1

P→S

PP l (‖Yk‖)

}

1l
I
k+1
P→S

<η1lYk /∈b(D,hP )

]

(51)

with

IkP→S =

+∞
∑

i=k

PP ξil(‖Yi‖)1lYi /∈b(D,hP ). (52)

Equation (44) can be written as:

vx(u) =

(

exp

{

ξl (‖u‖)

l (‖x‖)

}

1l‖u‖>‖x‖1l‖u−D‖>hP
1lPPξl(‖u‖)<η

+
(

1− 1l‖u‖>‖x‖1l‖u−D‖>hP

)

)

(53)

and (47)

E

[

exp

{

IxP→S

PP l (‖x‖)

}

1lI x
P→S

<η

]

≤ exp

{

− λP

∫

‖u‖>‖x‖;‖u−D‖>hP

(

1−

E

[

exp

{

ξl (‖u‖)

l (‖x‖)

}

1lPPξl(‖u‖)<η

])

du

}

. (54)

The upper bound onIP→S CCDF is then:

P(IP→S ≥ η) ≤ λP

∫

IR2\b(D,hP )

exp

{

−
η

PP l(‖x‖)

}

× exp

{

− λP

∫

‖u‖>‖x‖;‖u−D‖>hP

(

1−

1− exp
{

− η
PP

(

1
l(‖u‖) −

1
l(‖x‖)

)}

1− l(‖u‖)
l(‖x‖)

)

du

}

xdx. (55)

Proof: Proof of Proposition 2
First, we compute the FER for a node at the origin and receiv-

ing a frame from a primary node at distanced as described in
subsection II-C. We consider the FER for a transmission froma
primary node. Computations for the secondary network is equiv-
alent. We use the definition and method developed in [20]:

FER = P(SINR < θ) . (56)

TheSINR is the ratio of the power received from the transmit-
ter and the sum of the interference generated by the primary and
secondary nodes plus noise. For a transmission from a Primary
node, we get:

FER = P

(

ξPP l(d)

IS→P + IP→P +W
< θ

)

(57)

= P

(

ξ <
θ

PP l(d)
(IS→P + IP→P +W )

)

(58)

= 1− E

[

exp

{

−
θ

PP l(d)
(IS→P + IP→P +W )

}]

. (59)

As we assumed thatIS→P andIP→P were independent we get

FER = 1− E

[

exp

{

−
θ

PP l(d)
IS→P

}]

E

[

exp

{

−
θ

PP l(d)
IP→P

}]

E

[

exp

{

−
θ

PP l(d)
W

}]

. (60)

The two Laplace transforms forIS→P andW are obtained from
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their distributions (log-normal forIS→P ). ForIP→P , we get:

E

[

exp

{

−
θ

PP l(d)
IP→P

}]

= E

[

exp

{

−
θ

PP l(d)

∞
∑

i=1

PP ξil (‖Yi‖)

}]

(61)

= E

[

n
∏

i=1

exp

{

−
θ

PP l(d)
PP ξil (‖Yi‖)

}

]

. (62)

We use the probability generating function of the Poisson point
process, we get:

E

[

exp

{

−
θ

PP l(d)
IP→P

}]

= exp

{

−λP

∫

IR2

(

1− E

[

exp

{

−θ

PP l(d)
PP ξl (‖y‖)

}])

dy

}

(63)

= exp

{

−λP 2π

∫ +∞

0

(

1− E

[

exp

{

−θ

PP l(d)
PP ξl(r)

}])

rdr

}

(64)

= exp

{

−λP 2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}

. (65)
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