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Maximum Diversity Achieving Decoders in MIMO
Decode-and-Forward Relay Systems with Partial CSI

Xianglan Jin, Eun-Ji Kum, and Dae-Woon Lim

Abstract: We consider multiple-input multiple-output decode-and-
forward relay systems in Rayleigh fading channels under thepar-
tial channel state information (CSI) that the channel statistics of
the source-relay (SR) link and the instantaneous CSI of the source-
destination and relay-destination links are known at the destina-
tion. In this paper, we propose a new near maximum likelihood
(near-ML) decoder with two-level pairwise error probabili ty (near-
ML-2PEP) which uses the average PEP instead of the exact PEP.
Then, we theoretically prove that the near-ML and near-ML-2PEP
decoders achieve the maximum diversity, which is confirmed by
Monte Carlo simulations. Moreover, we show that the near-ML-
2PEP decoder can also achieve the maximum diversity by substi-
tuting the average PEP with the values that represent the error
performance of the SR link.

Index Terms: Decode-and-forward (DF), maximum likelihood
(ML), multiple-input multiple-output (MIMO), relay.

I. INTRODUCTION

Recently, cooperative communication systems have been ex-
tensively studied [1]–[4]. In cooperative communication sys-
tems, a cooperative diversity is obtained through assisting re-
lays. According to different relay operations, amplify-and-
forward (AF) and decode-and-forward (DF) relay systems were
developed in [1]. For the DF relay systems, a maximum likeli-
hood (ML) decoder was presented in [2] under the situation ofa
single antenna and binary phase shift keying (BPSK) being used.
The authors in [3] derived a closed-form formula of the approx-
imated bit error probability (BEP) for the ML decoder in the DF
relay system usingM -pulse amplitude modulation (PAM) and
M -quadrature amplitude modulation (QAM).

Due to the benefit of the multiple-input multiple-output
(MIMO) systems whose capacity can be increased dramatically
without increasing the bandwidth or transmit power [5], [6],
MIMO technique has been also applied in cooperative com-
munication systems. In [4], the ML decoder at the destination
in MIMO DF relay systems was presented under the assump-
tion that the relay knows the channel state information (CSI)
of the source-relay (SR) link and the destination knows all
the instantaneous CSI of the source-destination (SD), SR, and
relay-destination (RD) links, i.e., full CSI. Also, a full diversity
achievable near-ML decoder was proposed to reduce the high
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complexity of the ML decoder.
To apply the above decoders, the CSI of the SR link is needed

to be known at the destination, which is not easy in practice.
Thus, the minimum distance (MD) decoder [4] which assumes
that the relay always decodes correctly can be used at the desti-
nation. In [7] and [8], the cooperative partial detection strategy
with perfect relays was also introduced. In addition, the authors
in [9] used the same assumption that identical symbol estimates
are obtained at each relay to present the transmit diversityand
relay selection algorithms for multi-relay cooperative MIMO
systems with the linear minimum mean square error, succes-
sive interference cancellation, and adaptive reception decoders.
However, as shown in [4], decoders with the assumption of per-
fect relays increase error probabilities.

By considering the above problems, the ML and piecewise-
linear (PL) decoders were presented by using the average er-
ror probability (AEP) of the SR link [10], [11]. The ML and
PL decoders were also applied in differential modulation [12],
M-QAM [13], and distributed Alamouti code [14]. In [15], the
ML and PL decision rules for the orthogonal space-time block
coded (OSTBCed) DF relay system were also presented by ap-
plying the AEP of the SR link. Moreover, in [16], the ML and PL
decoders with OSTBCs utilizing arbitraryM -ary modulations
were presented without the CSI of the SR link, and it was proved
that the PL decoder achieves the maximum possible diversity.
All of the works considered the cases of the single-antenna sys-
tem or OSTBCs in which the AEP of the SR link is relatively
easy to derive via the channel statistics due to the orthogonality
of codes. However, single-symbol decoding in [17] is impossi-
ble in most of the MIMO systems, and then the AEP of the SR
link is not easy to derive. High-performance decoders in such
general MIMO DF relay systems without the CSI of the SR link
have not been investigated yet.

In this paper, we consider the MIMO DF relay systems with
single source, single relay, and single destination in Rayleigh
fading channels under the partial CSI that means the instanta-
neous CSI of the SR link is known at the relay, and the instan-
taneous CSI of the SD and RD links, and the channel statistics
of the SR link, are known at the destination. Clearly, learning
the channel statistics of the SR link at the destination represents
much less overhead than learning the real values of the channel
coefficients. We present the ML and near-ML decoders in gen-
eral MIMO DF relay systems under partial CSI, and based on
the average pairwise error probability (PEP), we propose a new
decoder called near-ML with two-level-PEP (near-ML-2PEP).
We prove that the near-ML and near-ML-2PEP decoders under
partial CSI can achieve the maximum diversity order. Further-
more, we show that not only the average PEP but also other val-
ues which represent the error performance of the SR link can
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Fig. 1. A MIMO DF relay system with one source, one relay, and one
destination. The solid line denotes the first phase transmission and
the dashed line denotes the second phase transmission.

be applied to the near-ML-2PEP decoder with the maximum
diversity. We call these decoders maximum diversity achieving
decoders in this paper. Monte Carlo simulations confirm the an-
alytically proved diversity and the characteristics of themaxi-
mum diversity achieving decoders.

The rest of the paper is organized as follows. The system
model is introduced in Section II. Section III described theML
and near-ML decoders under full and partial CSIs and proposed
a simple decoder, near-ML with two-level PEP. The diversityfor
the MIMO DF relay system under partial CSI is derived in Sec-
tion IV. Discussion and simulation results are provided to con-
firm the analytical results in Section V. Finally, the conclusion
is given in Section VI.

The following notations are used in this paper: Re(·) means
the real part of a complex number;E[·] denotes the expectation;
In denotes then × n identity matrix;‖ · ‖ and tr(·) represent
the Frobenius norm and the trace of a matrix, respectively;[·]i
means theith column vector of a matrix; the superscript(·)†
denotes the complex conjugate transpose.A ∼ CN (0, σ2

Inm)
denotes that thenm elements of ann×m random matrixA are
independent and identically distributed (i.i.d.) circularly sym-
metric Gaussian random variables with zero mean and variance
σ2.

II. SYSTEM MODEL

A MIMO DF relay system of one source, one relay, and one
destination withMS , MR, andMD antennas, respectively, is
shown in Fig. 1. Half duplex transmission and frequency-flat
quasi-static Rayleigh fading are assumed. It is also assumed
that the relay knows the instantaneous CSI of the SR link, and
the destination knows the instantaneous CSI of the SD and RD
links, and channel statistics of the SR link. LetT1 andT2 be
the numbers of transmitted symbols at the source and relay dur-
ing the first and second phases, respectively, andA be a set of
message symbols from theM -ary signal constellation.

In the first phase, the source broadcasts theMS × T1

codewordXS(x) constructed fromL data symbolsx =
(x1, x2, · · ·, xL) ∈ AL to the relay and destination, and in the
second phase, the relay sends theMR × T2 codewordXR(xR)

constructed fromxR = (xR
1 , x

R
2 , · · ·, xR

L) ∈ AL which are the
decoded symbols at the relay in the first phase. The received
signals at the relay and destination in the first phase are given by

YSR =
√

PSKXS(x) +NSR,

YSD =
√

PSGXS(x) +NSD (1)

wherePS is the average transmit power of each antenna at the
source,K ∼ CN (0, σ2

SRIMRMS
) andG ∼ CN (0, σ2

SDIMDMS
)

are the channel coefficient matrices of the SR and SD
links, respectively.NSR ∼ CN (0, σ2

IMRT1
) and NSD ∼

CN (0, σ2
IMDT1

) represent the noise matrices at the relay and
destination in the first phase.

In the second phase, the received signal at the destination is
given by

YRD =
√

PRFXR(xR) +NRD (2)

wherePR is the average transmit power of each antenna at the
relay.F ∼ CN (0, σ2

RDIMDMR
) is the channel coefficient matrix

of the RD channel andNRD ∼ CN (0, σ2
IMDT2

) is the noise
matrix at the destination in the second phase.

It is assumed that the total transmit powers at both the source
and relay are equal to one. Then, the transmit SNRs in the SR,
SD, and RD links are all equal toSNR = 1/σ2.

III. DECODERS UNDER FULL AND PARTIAL CSI

A. ML and Near-ML Decoders under Full CSI

We consider the ML decoder of the MIMO DF relay system
under full CSI. In the ML decoder at the destination, we choose
x̂ to maximize the probability density function (pdf) of the re-
ceived signals given a transmitted signal and the CSI of the SR,
SD, and RD links,p (YSD,YRD|x̌,K,G,F), i.e.,

x̂= arg max
x̌∈AL

p (YSD,YRD|x̌,K,G,F)

= arg max
x̌∈AL

p (YSD|XS(x̌),G)

∑

x̌R∈AL

p (YRD|XR(x̌R),F)PSR(x̌R|x̌,K)

= arg max
x̌∈AL

[

−‖YSD−√
PSGXS(x̌)‖2
σ2

+ln
∑

x̌R∈AL

exp
(−‖YRD−√

PRFXR(x̌R)‖2+σ2lnPSR(x̌R|x̌,K)

σ2

)]

(3)

wherePSR(x̌R|x̌,K) is the probability that the relay decodes the
received signal tǒxR when the source transmits datax̌. Due to
the difficulty derivingPSR(x̌R|x̌,K) in most multiple-antenna
cases [18], the conditional PEP at the relayPSR(x̌ → x̌R|K)
is used instead ofPSR(x̌R|x̌,K) in [4]. SincePSR(x̌ → x̌R|K)
only consideršx and x̌R but not the other signals, their deci-
sion boundaries are relatively simple and so is the derivation of
PSR(x̌ → x̌R|K) [4], [19]. Also, the widely-used max-log ap-
proximation [3], [20], [21],ln

∑

i e
zi ≈ maxi zi is used. Then,
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the near-ML decoder that achieves full diversity [4] is written as

x̂ = arg min
x̌∈AL

{

‖YSD−
√

PSGXS(x̌)‖2

+ min
x̌R∈AL

[

‖YRD−
√

PRFXR(x̌R)‖2−σ2lnPSR(x̌→ x̌R|K)
]}

(4)

where the conditional PEP betweenx̌ andx̌R [22] is

PSR(x̌ → x̌R|K) = Q

(

√

PS

2σ2

∥

∥K
(

XS(x̌)−XS(x̌R)
)∥

∥

2

)

.

(5)

The performance of the near-ML decoder approaches to that of
the ML decoder as shown in [4].

B. Decoders under Partial CSI

Under partial CSI, the destination knows the instantaneous
CSI of the SD and RD links and the channel statistics of the SR
link. Therefore, the ML decoder can be written as

x̂= arg max
x̌∈AL

p (YSD,YRD|x̌,G,F)

= arg max
x̌∈AL

[

−‖YSD−√
PSGXS(x̌)‖2
σ2

+ln
∑

x̌R∈AL

exp
(−‖YRD−√

PRFXR(x̌R)‖2+σ2lnPSR(x̌R|x̌)
σ2

)]

(6)

wherePSR(x̌R|x̌) = EK

[

PSR(x̌R|x̌,K)
]

.
Similar to the full CSI case, the probabilityPSR(x̌R|x̌) is very

difficult to derive, thus the PEPPSR(x̌ → x̌R) = EK

[

PSR(x̌ →
x̌R|K)

]

is used instead ofPSR(x̌R|x̌), and then the near-ML
decoder under partial CSI is presented as

x̂ = arg min
x̌∈AL

{

‖YSD−
√

PSGXS(x̌)‖2

+ min
x̌R∈AL

[

‖YRD−
√

PRFXR(x̌R)‖2−σ2 lnPSR(x̌ → x̌R)
]}

.

(7)

Taking an expectation of the conditional PEP in (5), the PEP can
be derived by using the channel statistics of the SR link.

Lemma 1: The PEPPSR(x→z) between a signal pairx and
z 6= x at the relay is derived as

PSR(x→z)=
1

2

r
∑

i=1

MR
∑

k=1

Akl



1−
√

ci
1+ci

k−1
∑

j=0

(

2j

j

)

[4(1+ci)]
−j





(8)

where Akl =

{

d
MR−k

dz
MR−k

∏

r
n=1,n 6=i

( 1
1+cnz

)MR

}
∣

∣z=−c−1

i

(MR−k)!c
MR−k

i

, ci =

PSσ
2
SRλi/4σ

2, and λ1, · · ·, λr are nonzero eigenvalues of
(XS(x) − XS(z))(XS(x) − XS(z))

† whose rank isr. Con-
sidering the limitation ofσ2 → 0 (SNR → ∞), we have

lim
σ2→0

lnPSR(x → z)

lnσ2
= rMR. (9)

Let rS be the minimum rank of(XS(x) − XS(z))(XS(x) −
XS(z))

† for all z 6= x. Then, the diversitydSR at the relay is
achieved asdSR = rSMR.
Proof: See Appendix-A. 2

As shown in Lemma 1, the PEPsPSR(x → z) for all the pairs
of x andz do not depend on the instantaneous CSI and the re-
ceived signal, thus these can be saved in memory. However, the
memory requirement increases exponentially with the transmit-
ted signal numberL and the constellation sizeM .

To save memory, we only use two levels of PEPs,
i.e., pairwise probability of correctly decodingPSR(x →
x) = 1/2 for z = x and the average PEPPSR =

1
ML(ML−1)

∑

x,z6=x
PSR(x → z) for z 6= x which is linearly

proportional toSNR−dSR in the high SNR. Then, the decoder
in (7) becomes (10) in the top of next page. We call it near-ML
with two-level-PEP (near-ML-2PEP). It is trivial that onlyone
valuePSR is needed to save in memory. Next, we will analyze
the diversity of the near-ML and near-ML-2PEP decoders for
the MIMO DF relay systems under partial CSI.

Note that the near-ML and near-ML-2PEP decoders can eas-
ily be extended to multiple-relay systems.

IV. DIVERSITY ANALYSIS OF MIMO DF RELAY
SYSTEMS UNDER PARTIAL CSI

To clearly analyze the near-ML and near-ML-2PEP decoders,
we use a functionf(x, z) instead ofPSR(x → z) andPSR in (7)
and (10), respectively. Then we can write both decoders in the
same form as follows

x̂ = arg min
x̌∈AL

{

‖YSD−
√

PSGXS(x̌)‖2

+ min
x̌R∈AL

[

‖YRD−
√

PRFXR(x̌R)‖2−σ2lnf(x̌, x̌R)
]}

(11)

wheref(x̌, x̌R) = PSR(x̌ → x̌R) for the near-ML decoder

andf(x̌, x̌R) =

{

1/2 if x̌R = x̌

PSR if x̌R 6= x̌
for the near-ML-2PEP de-

coder. Thus, we havemaxx̌R
f(x̌, x̌R) = f(x̌, x̌) = 1/2. Now,

we derive the PEP of the MIMO DF relay system with the de-
coder in (11).

Let P (x → x̃) be the PEP between symbolsx andx̃ at the
destination. The diversityd of the system is given as follows

d = min
x,x̃6=x

lim
σ2→0

lnP (x → x̃)

lnσ2
. (12)

Considering all possible transmit symbols at the relay, thePEP
at the destination should be written as

P (x → x̃) = EG,F[P (x → x̃|G,F)]

=
∑

xR∈AL

EG,F

[

P (x → x̃|xR,G,F)
]

PSR(xR|x)

(13)

whereP (x → x̃|xR,G,F) denotes the conditional PEP of de-
ciding x̃ at the destination whenx andxR are transmitted from
the source and relay, respectively, for givenG andF. It can be
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x̂=argmin
x̌

{

∥

∥YSD−
√

PSGXS(x̌)
∥

∥

2
+min

[

∥

∥YRD−
√

PRFXR(x̌)
∥

∥

2
, min

x̌R

∥

∥YRD−
√

PRFXR(x̌R)
∥

∥

2−σ2ln
(

2PSR

)

]

}

. (10)

written as

P (x → x̃|xR,G,F) = P
(

m(x) > m(x̃)
)

(14)

where the metric functionm(z) = ‖YSD−√
PSGXS(z)‖2+

minx̌R∈AL

[

‖YRD−
√
PRFXR(x̌R)‖2−σ2 ln f(z, x̌R)

]

. Putting

(1) and (2) to the metric function, then, we have

m
(

x
)

=‖NSD‖2+ min
x̌R∈AL

[

∥

∥

√

PRF(XR(xR)−XR(x̌R))+NRD

∥

∥

2

−σ2ln f(x, x̌R)
]

(15)

and

m(x̃) =
∥

∥

√

PSG
(

XS(x)−XS(x̃)) +NSD

∥

∥

2

+ min
x̌R∈AL

[

∥

∥

√

PRF(XR(xR)−XR(x̌R))+NRD

∥

∥

2

−σ2lnf(x̃, x̌R)
]

. (16)

Before the derivation, we give the following useful theorem.
Theorem 1: Let A and B be complex matrices satisfy-

ing ‖B‖2 > ‖A‖2 and N a random matrix of the statisti-
cally independent entries with complex Gaussian distribution
CN (0, σ2) [4]. Then, forσ2 → 0, ‖B+N‖2 ≥ ‖A+N‖2
in probability, i.e.,

lim
σ2→0

P
(

‖B+N‖2 ≥ ‖A+N‖2
)

= 1.

For simplicity,P (a = b) in probability, i.e.,limσ2→0 P (a =

b) = 1, is denoted bya
P
= b and similarly the notations

P
≤ and

P
≥

are also used in this paper.
Next, we derive the achievable diversity via the following

subsections.

A. Simplification of themin Function in (15) and (16)

Plugging (15) and (16) into (14), the conditional PEP can be
derived. However, the min functions make it difficult to derive.
Thus, similar to [4], we consider the above two metrics (15) and
(16) by dividing the summand in (13) into two cases ofxR = x

andxR 6= x in the high SNR region.
The case ofxR = x:

From Theorem 1 and the fact thatmaxz f(x, z) = f(x,x) =
1/2, we have

m
(

x
)

=
∥

∥NSD‖2+ min
x̌R∈AL

[

∥

∥

√

PRF(XR(x)−XR(x̌R))+NRD

∥

∥

2

− σ2lnf(x, x̌R)
]

P
=‖NSD‖2+‖NRD‖2−σ2ln

1

2
.

Similarly, form(x̃) in (16), since

∥

∥

√

PRF
(

XR(x)−XR(x̌R)
)

+NRD

∥

∥

2 −σ2ln f(x̃, x̌R)
{

=‖NRD‖2−σ2ln f(x̃,x) for x̌R=x

P
≥
∥

∥

√
PRF

(

XR(x)−XR(x
min
F

)
)

+NRD

∥

∥

2−σ2ln 1
2 for x̌R 6=x

wherexmin
F

= argminx̌R 6=x

∥

∥F
(

XR(x) − XR(x̌R)
)∥

∥

2
, we

have

m(x̃)
P
≥
∥

∥

√

PSG
(

XS(x)−XS(x̃)
)

+NSD

∥

∥

2

+min
[

‖NRD‖2−σ2ln f(x̃,x),

∥

∥

√

PRF
(

XR(x)−XR(x
min
F

)
)

+NRD

∥

∥

2−σ2ln
1

2

]

.

UsingPSR(xR = x|x) ≤ 1, the summand in (13) for the case of
xR = x can be upper bounded as (17) in the top of next page.

The case ofxR 6= x:
Since the value of the min function in (15) must be less than

or equal to one of the elements including in the min function,an
upper bound onm(x) can be obtained as

m(x)
P
≤ ‖NSD‖2 + ‖NRD‖2 −σ2ln f(x,xR) (18)

by settingx̌R = xR. On the other hand, a lower bound onm(x̃)
occurs wheňxR = xR = x̃ from Theorem 1, i.e.,

m(x̃)
P
≥
∥

∥

√

PSG
(

XS(x)−XS(x̃)
)

+NSD

∥

∥

2
+‖NRD‖2−σ2ln

1

2
.

(19)

SincePSR(xR|x) is equal to or less thanPSR(x → xR) for
xR 6= x, by using (18) and (19), the summand in (13) for the
case ofxR 6= x can be upper bounded as

EG,F

[

P (x → x̃|xR 6= x,G,F)
]

PSR(xR 6= x|x)
P
≤EG,F

[

P
(

‖NSD‖2 + ‖NRD‖2−σ2ln 2f(x,xR)

>
∥

∥

√

PSG
(

XS(x)−XS(x̃)
)

+NSD

∥

∥

2
+‖NRD‖2

)]

PSR(x→xR).

(20)

B. Upper Bounds on the Summands in (13)

In this subsection, we continue to derive the upper bounds on
the summands in (13). We define anMD × rS matrixG′ and an
MD × rR matrixF′ as

[G′]i = [GU]i for i = 1, · · ·, rS

and
[F′]i = [FV]i for i = 1, · · ·, rR
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EG,F

[

P
(

x → x̃|xR = x,G,F)
]

PSR(xR = x|x)
P
≤ EG,F

[

P
(

‖NSD‖2 + ‖NRD‖2 >
∥

∥

√

PSG
(

XS(x)−XS(x̃)
)

+NSD

∥

∥

2

+min
[

‖NRD‖2−σ2ln 2f(x̃,x),
∥

∥

√

PRF
(

XR(x)−XR(x
min
F

)
)

+NRD

∥

∥

2
])

]

. (17)

respectively, whereU andV are the unitary matrices whose
columns are the eigenvectors of(XS(x) − XS(x̃))(XS(x) −
XS(x̃))

† and (XR(x) − XR(x
min
F

))(XR(x) − XR(x
min
F

))†,
respectively. Letωmin and µmin be the minimum values
among nonzero eigenvalues of(XS(x) − XS(z))(XS(x) −
XS(z))

† and (XR(x) − XR(z))(XR(x) − XR(z))
† for all

z 6= x, respectively. Using Fact 1 in Appendix-B, we
have PS

∥

∥G
(

XS(x) − XS(x̃)
)
∥

∥

2 ≥ PSωmin‖G′‖2 and

PR

∥

∥F
(

XR(x) − XR(x
min
F

)
)
∥

∥

2 ≥ PRωmin‖F′‖2. Also, from

Theorem 1, we have
∥

∥

√
PSG

(

XS(x) − XS(x̃)
)

+ NSD

∥

∥

2 P
≥

‖√PSωminG
′ +NSD‖2 and

∥

∥

√
PRF

(

XR(x) − XR(x
min
F

)
)

+

NRD

∥

∥

2 P
≥ ‖√PRωminF

′ +NRD‖2. Then the upper bounds on
the summands in (17) and (20) can be rewritten as

EG,F

[

P
(

x → x̃|xR = x,G,F
)

]

PSR(xR = x|x)
P
≤EG′,F′

[

P
(

‖NSD‖2+‖NRD‖2>‖
√

PSωminG
′+NSD‖2

+min
[

‖NRD‖2−σ2ln 2f(x, x̃), ‖
√

PRµminF
′+NRD‖2

])

]

(21)

and

EG,F

[

P
(

x → x̃|xR 6= x,G,F
)

]

PSR(xR 6= x|x)
P
≤EG′,F′

[

P
(

‖NSD‖2 + ‖NRD‖2 −σ2ln 2f(x,xR)

>‖
√

PSωminG
′+NSD‖2+‖NRD‖2

)]

PSR(x→xR). (22)

Since multiplying the unitary matrix does not change the statisti-
cal distribution of the matrix with circularly symmetric complex
Gaussian entries, the entries ofG

′ andF′ have the same dis-
tribution as the entries ofG andF, respectively. Therefore, we
assume anMD × rS matrixG′′ and anMD × rR matrixF′′ as

[G′′]i = [G]i for i = 1, · · ·, rS
and

[F′′]i = [F]i for i = 1, · · ·, rR
and then the inequalities in (21) and (22) can be rewritten as

EG,F

[

P
(

x → x̃|xR = x,G,F
)

]

PSR(xR = x|x)
P
≤EG′′,F′′

[

P
(

‖NSD‖2+‖NRD‖2>‖
√

PSωminG
′′+NSD‖2

+min
[

‖NRD‖2−σ2ln2f(x, x̃), ‖
√

PRµminF
′′+NRD‖2

])

]

(23)

and

EG,F

[

P
(

x → x̃|xR 6= x,G,F
)

]

PSR(xR 6= x|x)
P
≤EG′′,F′′

[

P
(

‖NSD‖2 + ‖NRD‖2 −σ2ln 2f(x,xR)

> ‖
√

PSωminG
′′+NSD‖2+‖NRD‖2

)]

PSR(x→xR). (24)

Combining (23), (24), and (13), the upper bound on the PEP in
(12) can be derived. In the next subsection, we will derive the
achievable diversity by finally calculating the upper bounds in
(23) and (24).

C. Derivation of Diversity

Let s = 2
√
PSωminRe

{

tr
(

G
′′
N

†
SD

)}

, t = 2
√
PRµmin

Re
{

tr
(

F
′′
N

†
RD

)}

, q = −σ2ln 2f(x, x̃), q′ = −σ2ln 2f(x,xR),

w = PSωmin

∥

∥G
′′∥
∥

2
, andh = PRµmin

∥

∥F
′′∥
∥

2
. Then,s ∼

N (0, 2wσ2) andt ∼ N (0, 2hσ2).
The right-hand side (RHS) of (23) can be rewritten as

Ew,h

[

P
(

t > q−h, s < −w− q
)

+P
(

t < q−h, t+s < −w−
h
)

]

= A + B, whereA = Ew

[

Q
(

w+q√
2wσ2

)]

Eh

[

Q
(

q−h√
2hσ2

)]

and B = Ew,h

[

∫ q−h

−∞ Q
(

w+h+t√
2wσ2

)

exp(− t2

4hσ2 )
√
4πhσ2

dt
]

. Also, the

RHS of (24) can be rewritten as

Eq′,w

[

P
(

s < q′ − w
)]

PSR(x → xR)

=Ew

[

Q
( w − q′√

2wσ2

)]

PSR(x → xR)

≤
(
∫ q′

0

pw(x)dx+Ew

[

exp
(

− (w−q′)2

4wσ2

)]

)

PSR(x→xR)

=C +D (25)

whereC = PSR(x → xR)
∫ q′

0
pw(x)dx andD = Ew

[

exp
(

−
w
4σ2 −

q′2

4σ2

w

)]

exp
(

q′

2σ2

)

PSR(x → xR). Then, the PEP in (12)

is bounded above by

P (x → x̃) =
∑

xR∈AL

EG,F

[

P (x → x̃|xR,G,F)
]

PSR(xR|x)

P
≤ A+B +

∑

xR 6=x

(C +D). (26)

Let dA = limσ2→0
lnA
lnσ2 , dB = limσ2→0

lnB
lnσ2 , dC =

limσ2→0
lnC
lnσ2 , anddD = limσ2→0

lnD
lnσ2 . Summarizing the re-

sults ofdA, dB, dC anddD, we can derive the diversity as fol-
lows.
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Fig. 2. Comparison of BEPs of various decoders in the uncoded single-
antenna DF relay system.
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Fig. 3. Comparison of BEPs of various decoders in the Alamouti-coded
DF relay system.

Theorem 2: For the MIMO DF relay systems, both the near-
ML and near-ML-2PEP decoders with partial CSI achieve the
diversity rSMD + min[rSMR, rRMD] whererS and rR are
the minimum ranks of(XS(x) − XS(z))(XS(x) − XS(z))

†

and(XR(x) − XR(z))(XR(x) − XR(z))
† for all z 6= x, re-

spectively. The full diversityMSMD + MR min[MS ,MD] is
achieved whenrS = MS andrR = MR.
Proof : See Appendix-C. 2

V. DISCUSSION AND MONTE CARLO SIMULATIONS

A. Characteristic of Maximum Diversity Achieving Decoders

In the previous section, we proved that the near-ML and
near-ML-2PEP decoders under partial CSI have the diversity
rSMD + min[rSMR, rRMD] which is the same as the diver-
sity of the near-ML decoder under full CSI derived in [4]. Also,
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Fig. 4. Comparison of BEPs of various decoders in the multiplexing DF
relay system.
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Fig. 5. Comparison of BEPs of various maximum diversity achieving
decoders in the DF relay systems with partial CSI when QPSK is
used.

from the derivation of the diversity, especially, (29), (30), and
(33), we can easily find that not only the near-ML and near-ML-
2PEP decoders but also decoders whosef(x̌, x̌R 6= x̌) in (11)
are linearly proportional toSNR−dSR in the high SNR range
achieve the maximum diversity. In this paper, we focus on the
achievable diversity and the idea of two-level-value applied in
the near-ML-2PEP decoder in general MIMO DF relay systems
and do not mathematically compare their error performances.

On the other hand, to obtain the maximum diversity order,
the maximum diversity achieving decoders need to consider the
transmit signal from the relay, which increases the decoding
complexity compared with the well-known MD decoder [4] that
assumes the relay always decodes correctly. While the MD de-
coder has the complexity orderO(|A|L), the maximum diversity
achieving decoders have the complexity orderO(|A|2L). How-
ever, the decoding complexity also can be reduced. Once the
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computations of
∥

∥YRD−√
PRFXR(x̌R)

∥

∥

2
are completed, we

save them to|A|L memories, then the decoders only need to do

2|A|L times computations of
∥

∥Y−HX
∥

∥

2
. Specially, the near-

ML-2PEP decoder in (10) needs only one additional memory for
minx̌R

∥

∥YRD−
√
PRFXR(x̌R)

∥

∥

2
and3|A|L times computations

of
∥

∥Y−HX
∥

∥

2
, which means the complexity order isO(|A|L).

For example, for the Alamouti-coded DF relay system, the com-
plexity order isO(|A|) which is comparable with the PL de-
coder [16]. Therefore, the proposed near-ML-2PEP decoder can
be applied in practice without much complexity.

B. Monte Carlo Simulations

To confirm the analytical results, we give some Monte Carlo
simulations in this subsection.

First, we consider the uncoded single-antenna DF relay sys-
tem as a special case of MIMO DF relay systems. As an example
where the ML decoder can be used at the destination, we han-
dle the Alamouti-coded DF relay system where the source and
relay transmit signals by using Alamouti code. Finally, we con-
sider the2 × 2 multiplexing DF relay system to show the case
where the ML decoder is difficult to apply at the destination,
where2 × 2 multiplexing MIMO construction are used at both
the source and relay.

Figs. 2–4 present the BEP curves of various decoders under
full and partial CSI on the channel condition ofσ2

SR = σ2
SD =

σ2
RD = 1 for the uncoded single-antenna, Alamouti-coded, and
2×2 multiplexing DF relay systems, respectively, where ‘F-CSI’
means the full CSI assumption and ‘P-CSI’ means the partial
CSI assumption at the destination. The curves with quadrature
phase shift keying (QPSK) and 16QAM show that the ML, near-
ML, near-ML-2PEP decoders have similar BEP performances
under partial CSI and their curves are almost parallel with that of
the ML and near-ML decoders under full CSI even though there
are performance gaps between BEPs of the above decoders un-
der full CSI and partial CSI. This means that they have the same
diversity as proved in Theorem 2. We can also observe that the
near-ML and near-ML-2PEP decoders have much better perfor-
mance than the conventional maximum ratio combining (MRC)
[27] and MD decoder [4] under partial CSI.

Next, we compare various maximum diversity achieving de-
coders by Monte Carlo simulations. As discussed in Subsec-
tion V.A, the decoders withlimSNR→∞ f(x̌, x̌R 6= x̌) ∼
SNR−dSR will achieve the maximum diversity. As examples,
we present two more decoders: 1)f(x̌, x̌R 6= x̌) = Pmax

SR =
maxx,z6=x PSR(x → z) and 2)f(x̌, x̌R 6= x̌) = SNR−dSR

in (11). We call them near-ML-2PEP withPmax
SR and near-

ML-2PEP with SNR−dSR, respectively. The simulation re-
sults in Fig. 5 show that all of the decoders of the near-ML,
near-ML-2PEP, near-ML-2PEP withPmax

SR , and near-ML-2PEP
with SNR−dSR achieve the maximum diversity in the uncoded
single-antenna, Alamouti-coded, and multiplexing DF relay sys-
tems.

VI. CONCLUSION

In this paper, we have presented the ML and near-ML de-
coders in the MIMO DF relay systems under partial CSI and

proposed the near-ML-2PEP decoder to save memory. We have
also proved that the near-ML and near-ML-2PEP decoders can
achieve the maximum diversity in the MIMO DF relay sys-
tems. From the simulation results, it was found that the pro-
posed near-ML-2PEP decoder obtains similar BEP performance
to the ML and near-ML decoders and much better performance
than MRC and MD decoders under partial CSI. Furthermore,
not only the average PEP but also other values which satisfy
limSNR→∞ f(x̌, x̌R 6= x̌) ∼ SNR−dSR can be applied to the
near-ML-2PEP decoder with the maximum diversity.

APPENDICES

A. Proof of Lemma 1

For a pair of signals,x andz, the PEP can be derived by taking
an expectation on the coefficient matrix of the SR channel,K,
to the conditional PEP in (5), i.e.,

PSR(x → z) = EK

[

Q

(

√

PS

2σ2

∥

∥K
(

XS(x)−XS(z)
)∥

∥

2
)

]

.

By usingQ(x) = 1
π

∫ π
2

0
exp(− x2

2 sin2 θ
)dθ, the PEP can be de-

rived as

PSR(x→z)=
1

π

∫ π
2

0

EK

[

exp

(

−PS

∥

∥K
(

XS(x)−XS(z)
)
∥

∥

2

4σ2 sin2 θ

)]

dθ.

(27)

Let U be a unitary matrix whose columns are the eigenvectors
of (XS(x) − XS(z))(XS(x) − XS(z))

† corresponding to its
eigenvaluesλi’s, whereλi 6= 0 for i = 1, · · ·, r andλi = 0 for
i = r + 1, · · ·,MS. Then, we have

∥

∥K
(

XS(x)−XS(z)
)
∥

∥

2

= tr
(

K
(

XS(x)−XS(z)
)(

XS(x)−XS(z)
)†
K

†)

= tr
(

KUdiag(λ1, · · ·, λr, 0, · · ·, 0)U†
K

†)

=

r
∑

i=0

λi‖[KU]i‖2.

Therefore, the expectation in (27) can be rewritten as

EK

[

exp
(

−PS
∑r

i=0 λi‖[KU]i‖2
4σ2 sin2 θ

)]

=

r
∏

i=1

(

sin2 θ

sin2 θ+
PSσ2

SR
λi

4σ2

)MR

(28)

where the equation is due to the fact that‖[KU]i‖2 is the sum-
mation ofMR i.i.d. exponential random variables with rate pa-
rameter1/σ2

SR. By plugging (28) into (27) and using the result
in [24], the PEP can be derived as

PSR(x → z)=
1

π

∫ π
2

0

r
∏

i=1

(

sin2 θ

sin2 θ +
PSσ2

SR
λi

4σ2

)MR

dθ

=
1

2

r
∑

i=1

MR
∑

k=1

Akl

[

1−
√

ci
1+ci

k−1
∑

j=0

(

2j

j

)

[4(1+ci)]
−j
]]
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whereAkl =
{ d

MR−k

dzMR−k

∏r
n=1,n 6=i

( 1
1+cnz

)MR}|z=−c−1

i

(MR−k)!c
MR−k

i

andci =

PSσ2
SRλi

4σ2 . In addition, whenσ2 → 0, the PEP can be simplified
to

lim
σ2→0

PSR(x→z)= lim
σ2→0

1

π

∫ π
2

0

r
∏

i=1

(

sin2 θ

sin2 θ+
PSσ2

SR
λi

4σ2

)MR

dθ

=
1

π

∫ π
2

0

(sin2θ)rMRdθ · lim
σ2→0

r
∏

i=1

(PSσ
2
SRλi

4σ2

)−MR

=
1

2

(

2rMR

rMR

)

(

r
∏

i=1

PSσ
2
SRλi

)−MR

lim
σ2→0

(σ2)rMR .

Then, we have

lim
σ2→0

lnPSR(x → z)

lnσ2
= rMR.

B. Fact 1

Fact 1: [4] For an n × m matrix A, there exist a unitary
matrix U and a real diagonal matrixΛ = diag(λ1, · · ·, λn)
such thatAA

† = UΛU
†. We assumeλi 6= 0, i = 1, · · ·,m,

λj = 0, j = m + 1, · · ·, n, andλmin = mini=1,···,m λi. Then,
the following inequality holds for anyl × n matrixB as

‖BA‖2 =

m
∑

i=1

λi

∥

∥[BU]i
∥

∥

2 ≥ λmin‖B′‖2

whereB′ is an l × m matrix constructed by[B′]i = [BU]i,
i = 1, · · ·,m.

C. Proof of Theorem 2

ForA, by usingQ(x) ≤ exp(−x2/2), x ≥ 0, we have

A ≤ Ew

[

exp
(

− (w + q)2

4wσ2

)]

= Ew

[

exp
(

− w

4σ2
−

q2

4σ2

w

)]

exp
(

− q

2σ2

)

. (29)

Sincew is arSMD-Erlang random variable with pdf ofpw(x) =
λnxn−1 exp(−λx)

(n−1)! , λ = PSωminσ
2
SD, n = rSMD, the expectation

in (29) can be rewritten as

Ew

[

exp
(

− w

4σ2
−

q2

4σ2

w

)]

=

∫ ∞

0

λnxn−1 exp(−λx)

(n− 1)!
exp

(

− x

4σ2
−

q2

4σ2

x

)

dx

=

∫ ∞

0

λnxn−1

(n− 1)!
exp

(

−
( 1

4σ2
+ λ
)

x−
q2

4σ2

x

)

dx

(a)
=

2λn

(n− 1)!

(
q2

4σ2

1
4σ2 + λ

)
n
2

Kn

(

2

√

q2

4σ2

( 1

4σ2
+ λ
)

)

where(a) is derived from the equation
∫∞
0 xv−1 exp(−β/x −

γx) = 2(β/γ)v/2Kv(2
√
βγ),Re{β} > 0,Re{γ} > 0 and

Kv(·) is a modified Bessel function [25]. Since

lim
σ2→0

f(x, x̃)=



















limσ2→0 PSR(x→ x̃)=(σ2)rMR

for the near-ML decoder

limσ2→0 PSR=(σ2)rSMR

for the near-ML-2PEP decoder

q/σ2 = − ln 2f(x, x̃) is linearly proportional to− lnσ2

in high SNR range for both decoders, then, we have

2
√

q2

4σ2

(

1
4σ2 + λ

)

≫ 0. Moreover, by using the asymptotic ex-

pansionKv(z) ∼
√

π
2z e

−z
(

1 + 4v2−1
8z + (4v2−1)(4v2−9)

2!(8z)2 + · · ·
)

in [26], we have

dA≥ lim
σ2→0

ln

[

Ew

[

exp
(

− w
4σ2 −

q2

4σ2

w

)]

exp
(

− q
2σ2

)

]

lnσ2

= lim
σ2→0

ln

[

2λn

(n−1)!

(
q2

4σ2

1
4σ2 +λ

)
n
2

√

√

√

√

π

4
√

q2

4σ2

(

1
4σ2 +λ

)

exp

(

−2

√

q2

4σ2

( 1

4σ2
+λ
)

)

exp
(

− q

2σ2

)

]/

lnσ2

= lim
σ2→0

ln

[

2λnqn

(n−1)!

√

πσ2

q exp
(

− q
2σ2

)

exp
(

− q
2σ2

)

]

lnσ2

= lim
σ2→0

ln

[

2
√
πλnσ2n

(n−1)! ( q
σ2 )

n− 1
2 exp

(

− q
σ2

)

]

lnσ2

= lim
σ2→0

ln 2
√
πλn

(n−1)!

lnσ2
+

n lnσ2

lnσ2
+

(n− 1
2 ) ln(

q
σ2 )

lnσ2
+

− q
σ2

lnσ2
.

(30)

From Lemma 1, we finally achieve thatdA ≥ n + dSR =
rSMD+rSMR for both near-ML and near-ML-2PEP decoders.

ForB, we have

B≤Ew,h

[
∫ −w−h

−∞

exp(− t2

4hσ2 )√
4πhσ2

dt

+

∫ q−h

−w−h

exp
(

− (w+h+t)2

4wσ2

)exp(− t2

4hσ2 )√
4πhσ2

dt

]

= Ew,h

[

exp
(

− (w+h)2

4hσ2

)

+exp
(

−w+h

4σ2

)

√

w

w+h

∫ q−h

−w−h

exp(− (t+h)2

4 wh
w+h

σ2
)

√

4π wh
w+hσ

2
dt

]

≤ 2Ew,h

[

exp
(

−w+h

4σ2

)]

.

Sincew andh arerSMD andrRMD-Erlang random variables
with parametersPSωminσ

2
SD andPRµminσ

2
RD, respectively and

dB can be lower bounded as

dB ≥ rSMD + rRMD. (31)
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ForC, we have

C = PSR(x → xR)

∫ q′

0

λnxn−1 exp(−λx)

(n− 1)!
dx

= PSR(x → xR)
γ(n, λq′)

(n− 1)!

whereγ(α, x) =
∫ x

0
e−ttα−1dt. By using the series representa-

tion of γ(α, x) =
∑∞

i=0
(−1)ixα+i

i!(α+i) [25], the above integral can
be rewritten as

C =
PSR(x → xR)

(n− 1)!

∞
∑

i=0

(−1)i(λq′)n+i

i!(n+ i)
.

From Lemma 1 andq′ = −σ2 ln 2f(x,xR), we have

dC ≥ rSMR + rSMD. (32)

Next, we considerD. For the near-ML decoder,q′ =
−σ2 ln 2PSR(x → xR), and thenD can be written as

Ew

[

exp
(

− w
4σ2 −

q′2

4σ2

w

)]

exp
(

− q′

2σ2

)

which has the same

form as the RHS of (29). Thus, we can use the result ofdA, i.e.,

dD ≥ rSMD + rSMR.

On the other hand,q′ = −σ2 ln 2PSR for the near-ML-2PEP
decoder and then, we have

D≤Ew

[

exp
(

− w

4σ2
−

q′2

4σ2

w

)]

exp
( q′

2σ2

)

∑

x,z6=x

PSR(x→z)

=
1

2
ML(ML−1)Ew

[

exp
(

− w

4σ2
−

q′2

4σ2

w

)]

exp
(

− q′

2σ2

)

.

(33)

By using the result ofdA, we also achievedD ≥ rSMD +
rSMR.

From (26) and the derivations ofdA, dB, dC , dD, we have the
diversity

d ≥ min
x,x̃6=x

min[dA, dB, dC , dD]

≥ rSMD +min[rSMR, rRMD].

Since the decoders under partial CSI cannot obtain larger di-
versity than the ML decoder under full CSI whose diversity
is rSMD + min[rSMR, rRMD], we have finally proved that
both the near-ML and near-ML-2PEP decoders under partial
CSI achieve the diversity ofrSMD + min[rSMR, rRMD] in
the MIMO DF relay systems. WhenrS = MS andrR = MR,
both achieve the full diversityMSMD +MR min[MS ,MD].
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