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Maximum Diversity Achieving Decoders in MIMO
Decode-and-Forward Relay Systems with Partial CSI

Xianglan Jin, Eun-Ji Kum, and Dae-Woon Lim

Abstract: We consider multiple-input multiple-output decode-and- complexity of the ML decoder.

forward relay systems in Rayleigh fading channels under thear- To apply the above decoders, the CSI of the SR link is needed
tial channel state information (CSI) that the channel statstics of to be known at the destination, which is not easy in practice.

the source-relay (SR) link and the instantaneous CSI of theairce-  Thys, the minimum distance (MD) decoder [4] which assumes
destination and relay-destination links are known at the dstina- {4t the relay always decodes correctly can be used at titie des

tion. In this paper, we propose a new near maximum likelihood nation. In [7] and [8], the cooperative partial detectiomttgy

(near-ML) decoder with two-level pairwise error probabili ty (near- . . i
ML-2PEP) which uses the average PEP instead of the exact PEP.WIth perfect relays was also introduced. In addition, thehars

Then, we theoretically prove that the near-ML and near-ML-2PEP in [9] usgd the same assumption that identical symbql ema
decoders achieve the maximum diversity, which is confirmedy &€ obtained at each relay to present the transmit diveasity
Monte Carlo simulations. Moreover, we show that the near-ML-  '€lay selection algorithms for multi-relay cooperative NUD
2PEP decoder can also achieve the maximum diversity by sulist Systems with the linear minimum mean square error, succes-
tuting the average PEP with the values that represent the eor  Sive interference cancellation, and adaptive recepticodiers.
performance of the SR link. However, as shown in [4], decoders with the assumption of per
fect relays increase error probabilities.
Index Terms: Decode-and-forward (DF), maximum likelihood By considering the above problems, the ML and piecewise-

(ML), multiple-input multiple-output (MIMO), relay. linear (PL) decoders were presented by using the average er-
ror probability (AEP) of the SR link [10], [11]. The ML and
I. INTRODUCTION PL decoders were also applied in differential modulatio?][1

-QAM [13], and distributed Alamouti code [14]. In [15], the
and PL decision rules for the orthogonal space-time block
coded (OSTBCed) DF relay system were also presented by ap-

lays. According to different relay operations, amplifygan plying the AEP of the SR link. Moreover, in [16], the ML and PL

forward (AF) and decode-and-forward (DF) relay systemsewe ecoders with OS.TBCS utilizing arbitraM-ary quulations
developt(ad ir)1 [1]. For the DF relay syst(emg a ”)‘/ax)i/mum likellVere presented without the CSI of the SR link, and it was ptove
' : {hat the PL decoder achieves the maximum possible diversity

. : : : . All of the works considered the cases of the single-antepsa s
single antenna and binary phase shift keying (BPSK) beiad.us ) _ 2 i
The authors in [3] derived a closed-form formula of the apxprotem or OdSTBCSf thh'ﬁh theIAEP_ o.f thg SR I|r;]k 1S r;l:.tlvely
imated bit error probability (BEP) for the ML decoder in th& D easy to derive via the channel statistics due to the ortraigpn

: : ; f codes. However, single-symbol decoding in [17] is imposs
relay system using/-pulse amplitude modulation (PAM) and®' ¢
M-quadrature amplitude modulation (QAM). ble in most of the MIMO systems, and then the AEP of the SR

Due to the benefit of the multiple-input muItipIe—outpupnk is not easy to derive. High-performance decoders irhsuc

(MIMO) systems whose capacity can be increased dramatic reneral 'VSMO .DF rellay syc'istems withoutthe CSI of the SR link
without increasing the bandwidth or transmit power [5],,[6 alve E.Ot een mvesugatgd yert{ MIMO DF rel ith
MIMO technique has been also applied in cooperative com- n this paper, we consider the relay systems wit

- . _..single source, single relay, and single destination in &gl
munication systems. In [4], the ML decoder at the destimal d?ng channels u%der thg partial CgSI that means the ir%t:tant
in MIMO DF relay systems was presented under the assump- o .

: ) ! eous CSI of the SR link is known at the relay, and the instan-
tion that the relay knows the channel state _|nfo_rmat|on Ic neous CSI of the SD and RD links, and theychannel statistics
of the source-relay (SR) link and the dgstlr)anon knows éﬁ the SR link, are known at the deétination Clearly, leagni
the instantaneous CSI of the source-destination (SD), 5&, the channel st;itistics of the SR link at the deétinatio , ts
relay-destination (RD) links, i.e., full CSI. Also, a fuliersity nasgn

; h less overhead than learning the real values of the ehann
achievable near-ML decoder was proposed to reduce the highch " .
prop !:g)efﬂments. We present the ML and near-ML decoders in gen-
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constructed fronxp = (zff, 2%, ... 2%) € AF which are the
decoded symbols at the relay in the first phase. The received
signals at the relay and destination in the first phase aemndiy

Ysr = \/ PsKXs(x) + Nsg,
Ysp = v/ PsGXS(X) + Nsp Q)

where Py is the average transmit power of each antenna at the
sourceK ~ CN(0,02:1n,ms) @andG ~ CN (0,025 Inr, 1)

are the channel coefficient matrices of the SR and SD
links, respectively.Nsg ~ CN(0,0%Ips,7,) and Ngp ~
CN(0,0215,1,) represent the noise matrices at the relay and
destination in the first phase.

Fig. 1. A MIMO DF relay system with one source, one relay, and one In the second phase, the received signal at the destination i

destination. The solid line denotes the first phase transmission and given by
the dashed line denotes the second phase transmission.

Yo = /PrFXg(xz) + Np (2)

be applied to the near-ML-2PEP decoder with the maximurT]1 . .
diversity. We call these decoders maximum diversity adhigpv wherePp is the av2erage tran;mlt power of each _a_ntenna a_t the
decoders in this paper. Monte Carlo simulations confirm the elay.F ~ CN(0, opplar, ) is the channel coefficient matrix

5 . ;
alytically proved diversity and the characteristics of thaxi- of th_e RD channt_al aan?D ~ CN(0,0°1y,,) is the noise
mum diversity achieving decoders. matrix at the destination in the second phase.

The rest of the paper is organized as follows. The system't is assumed that the total transmit powers at both the sourc
model is introduced in Section Il. Section Il described ke and relay are equal to one. Then, the transmit SNRs in the SR,

i _ 2
and near-ML decoders under full and partial CSls and praposal: @nd RD links are all equal 8NV R = 1/0°.
a simple decoder, near-ML with two-level PEP. The diverfity
t_he MIMQ DF rglay syste_m und.er partial CSl is der!ved in Sec- IIl. DECODERS UNDER EFULL AND PARTIAL CSI
tion IV. Discussion and simulation results are provideddo-c
firm the analytical results in Section V. Finally, the corsthn  A. ML and Near-ML Decoders under Full CSI

is given in Section V. We consider the ML decoder of the MIMO DF relay system

The following notations are used in this paper:(Renear.]s under full CSI. In the ML decoder at the destination, we clgoos
the real part of a complex numbeét{:] denotes the expectation;

I d h Henti L d % to maximize the probability density function (pdf) of the re
» denotes the: x n identity matrix; | - | and o) represent ;eiyeq signals given a transmitted signal and the CSI of the S
the Frobenius norm and the trace of a matrix, respectiVely; sn and RD linksp (Ysn, Yan|%, K, G, F), i.e
means theth column vector of a matrix; the superscrip}’ ’ P DI B B
denotes the complex conjugate transpase~ CN (0, 02L,,,,)
denotes that them elements of am x m random matrixA are
independent and identically distributed (i.i.d.) ciralyfasym- = arg max p (Ysp|Xs (%), G)
metric Gaussian random variables with zero mean and varianc xeAL
o?. > p(Yao|Xr(%r), F)Rr(Xr/% K)
xre AL
V|12
Il. SYSTEM MODEL — arg max [f ¥sp= Vs GXs ()]
e AL o2
(_HYRD_V PRFXR(f(R)|‘2—|—0'21DP5‘R(5(R|5(,K)):|

o2

%= arg max p (Ysp, Yrp|%, K, G, F)
xe AL

A MIMO DF relay system of one source, one relay, and one
destination withMg, Mg, and Mp antennas, respectively, is —HHZeXp
shown in Fig. 1. Half duplex transmission and frequency-flat x.ca-
guasi-static Rayleigh fading are assumed. It is also assume 3)
that the relay knows the instantaneous CSI of the SR link, and
the destination knows the instantaneous CSI of the SD and RBerePsr(xr|%, K) is the probability that the relay decodes the
links, and channel statistics of the SR link. LEt and 75 be received signal te&xg when the source transmits dataDue to
the numbers of transmitted symbols at the source and relay dhe difficulty deriving Pz (X r|%, K) in most multiple-antenna
ing the first and second phases, respectively,.dritk a set of cases [18], the conditional PEP at the refay;(x — xz|K)

message symbols from thé-ary signal constellation. is used instead aPsi (xR |%, K) in [4]. Since Psp(x — xz|K)
In the first phase, the source broadcasts ffie x 77 only considersc andxp but not the other signals, their deci-
codeword X s(x) constructed fromL data symbolsx = sion boundaries are relatively simple and so is the decdnaif

(1,29, 21) € AF to the relay and destination, and in the?r(x — xz|K) [4], [19]. Also, the widely-used max-log ap-
second phase, the relay sends itig x T, codewordX r(xz) proximation [3], [20], [21]In ), e* ~ max; 2; is used. Then,
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the near-ML decoder that achieves full diversity [4] is vaitas Let rg be the minimum rank ofXs(x) — Xg(z))(Xs(x) —
Xs(z))t for all z # x. Then, the diversitylsy at the relay is
X = arg 1 mln { Ysp—/PsGXs(%)? achieved adsp = rgMp.
Proof: See Appendix-A. a
+ minL{HYRD— \/I%FXR(XR)HQ—UQIHPSR(X%XRIK)} } As shown in Lemma 1, the PEP%z(x — z) for all the pairs
Xned 4 of x andz do not depend on the instantaneous CSI and the re-
(4) ceived signal, thus these can be saved in memory. Howeer, th
where the conditional PEP betwegmndx ; [22] is memory requirement increases exponentially with the tréas
ted signal numbeL. and the constellation siz& .
5 5 Ps . . 2 To save memory, we only use two levels of PEPSs,
Pop(x = Xz[K) = Q <\/T‘.2||K(XS(X) — Xs(xn))| ) " i.e., pairwise probability of correctly decodingr(x —
5) X) = 1/2 for z = x and the average PEH’E =
FTITT) 2ox,azx Lor(x — z) for z # x which is linearly
The performance of the near-ML decoder approaches to thap@bportional toS N R~%# in the high SNR. Then, the decoder
the ML decoder as shown in [4]. in (7) becomes (10) in the top of next page. We call it near-ML
. with two-level-PEP (near-ML-2PEP). It is trivial that onbne
B. Decoders under Partial CSl value Psy; is needed to save in memory. Next, we will analyze
Under partial CSI, the destination knows the instantaneotin® diversity of the near-ML and near-ML-2PEP decoders for
CSl of the SD and RD links and the channel statistics of the $ke MIMO DF relay systems under partial CSI.
link. Therefore, the ML decoder can be written as Note that the near-ML and near-ML-2PEP decoders can eas-
ily be extended to multiple-relay systems.

x= arg max p (Ysp, Yrp|X, G, F)
xe AL

— arg max {_ [ Ysp— vVPsGXs(%)|? IV. DIVERSITY ANALYSIS OF MIMO DF RELAY
%CAL o2 SYSTEMS UNDER PARTIAL CSI

—l—aneXp( ' Yro— VPRFXg (X2R)|‘2+0'21nPSR(XR|X) )} To clearly analyze the near-ML and near-ML-2PEP decoders,
g we use a functiorf (x, z) instead ofPsz(x — z) and Psg in (7)
(6) and (10), respectively. Then we can write both decodersen th
same form as follows

XpeAl

wherePsr(Xp|%X) = Ex [Psr(Xr %, K)].
Similar to the full CSl case, the probabilifgz (xg|X) isvery X = arg vaiﬁ{ [Ysp—/PsGXs (%)
difficult to derive, thus the PEPsg (%X — Xz) = Fx [Por (%X — e
xp|K)| is used instead ofyr(xp|%), and then the near-ML ~ + min, [HYRD_\/P;FXR(XR)HQ_Uanf(Xv 5(3)” (11)
decoder under partial CSl is presented as
where f(x,%r) = Psr(X — %p) for the near-ML decoder
andf(x,%g) = ;ﬁ :: )fR ; )f for the near-ML-2PEP de-
. - 2 2 < < SR XrR 7 X
+>“cglelﬁL[HYRD VPRFXp(xR)|*~ 0% In Pog(x - XR)}}' coder. Thus, we haveaxg,, f(X,%gr) = f(X,%) = 1/2. Now,
(7)  we derive the PEP of the MIMO DF relay system with the de-
coderin (11).
Let P(x — x) be the PEP between symboisandx at the
destination. The diversity of the system is given as follows

X = arg mln { |Ysp —/PsGX (%)

Taking an expectation of the conditional PEP in (5), the P&P c
be derived by using the channel statistics of the SR link.
Lemma 1: The PEPPsz(x— z) between a signal pak and

z # x at the relay is derived as In P -
d= min lim LjX) (12)

r Mg k-1 X, X#X 02—0 Ino
Psn(x—2) ZZAH = \/ 1+c Z( ) (Lteo)l™ Considering all possible transmit symbols at the relayREe

== 7=0 o) at the destination should be written as

Mk " . P(x — x) = Egr|P(x — X|G,F)]
where A4;; = {5 T () V2 2= P
k= (Mot P G = = Y Feor [P(x = %[xr, G, F)| Br(xg|x)

Psap\i/40?, and Aq,---, A\, are nonzero eigenvalues of XpEAL
(Xs(x) — X5(2))(Xs(x) — Xs(z))" whose rank ig-. Con- (13)

sidering the limitation ob? — 0 (SNR — o), we have
whereP(x — x|xg, G, F) denotes the conditional PEP of de-

lim In Rr(x — z) — rMp. (9) ciding x at the destination whex andx, are transmitted from
020 In o2 the source and relay, respectively, for giv@randF. It can be
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2 r{l}in}]YRD—\/EFXR(XR)HQ—JQIH(QP—SR)} } (10)

X=arg mi(in { |Ysp— V/PsGXg(X) HQerin [HYRDf\/PiRFXR(S()

written as Similarly, form(x) in (16), since

P(x = x|xg, G, F) = P(m(x) > m(i)) (14) ||/ PrF(Xr(x)—Xr(Xr)) + NMH2 —o’In f(X,%XR)
{: |Ngp||? —0?In f(x,x)

P .
2H\/P_RF(XR(X)—XR(xg‘“))+NRD||2—02111% for xp #x

. . forxp=x
where the metric functiom(z) = ||[Ysp — v PsGXs(2)|% +
ming e 4 {HYRD—\/PRFXR()“(R)HQ—UQ In f(z, xR)} . Putting

(1) and (2) to the metric function, then, we have wherexiin — argming, . HF(XR(X) B XR(XR))HQ. we

have
m(x):HNSDH2—|—VmEiﬂL{H PrF (Xr(xz) — Xr(%r))+Nap||”
XR

m(®) > | /PsG (Xs(x) - Xs(%) + Np”

—o?In f(x, )V(R)} (15)
+min [||NRD||2—J21nf(5<,x),
and ' ) 1
) H PRF(XR(X)fo(X%un))+NRDH 7021115]
m(x) = || VPsG(Xs(x) — Xs(x)) + Nsp|
. - 5 2 Using Psp(xr = x|x) < 1, the summand in (13) for the case of
ergle%{” ¥ (Xa(xr) XR(XR))JFNRDH xpr = x can be upper bounded as (17) in the top of next page.
9 - The case ofkp # x:
—onfx XR)} ' (16) Since the value of the min function in (15) must be less than

or equal to one of the elements including in the min functam,

Before the derivation, we give the following useful theorem upper bound om:(x) can be obtained as

Theorem 1: Let A and B be complex matrices satisfy-
ing |BJ|> > ||A]|> and N a random matrix of the statisti-
cally independent entries with complex Gaussian distigiout
CN(0,0?) [4]. Then, foro® — 0, |[B+ N||> > ||A + N|?
in probability, i.e.,

L 2 2 2
m(x) < |[[Nsp||” + [Nrp " —o”In f(x,xr)  (18)

by settingxr = xr. On the other hand, a lower bound er{x)
occurs wherkg = xgr = x from Theorem 1, i.e.,
lim P(|B+N|?> |A+N|?) =1. P ) 1
72—0 %)> || VPG (Xg(x)—Xg(%))+N, Nzpl||?—o?ln-.
For simplicity, P(a = b) in probability, i.e.,lim,2_,o P(a = m(x)_H\/; (Xs(x)=Xs(®))1+ SDH FINwll =0 (jg)
P P
b) = 1, is denoted by £ b and similarly the notations and>
are also used in this paper. Since Psp(xp|x) is equal to or less thafsp(x — xp) for
Next, we derive the achievable diversity via the followingr # x, by using (18) and (19), the summand in (13) for the
subsections. case ofkp # x can be upper bounded as

A. Simplification of thenin Function in (15) and (16) fo [p(x = %|xp £ x, G, F)} Par(xp # x|x)

Plugging (15) and (16) into (14), the conditional PEP can be ) ,
derived. However, the min functions make it difficult to dexi SEG,F[P(HNSDH + [Nrpl|” =" In 2 (x, x)
Thus, similar to [4], we consider the above two metrics (1) a

(16) by dividing the summand in (13) into two casexaf = x
andxp # x in the high SNR region.
The case ofxp = x:

From Theorem 1 and the fact thatx, f(x,z) = f(x,x) =
1/2, we have

m(x):HNSDHQ—i—Vmin [H PRF(XR(X)—XR(XR))—FNRDW
xrE€AL

—o?Inf(x, 5(3)i|

P 1
= [Nop [+ [[Ngpl|* ~o*In 5.

>|[VRG (Xs () — X (%)) Nso|| “H|Naw |2 ) | Pore(x —5%cq).
(20)

B. Upper Bounds on the Summands in (13)

In this subsection, we continue to derive the upper bounds on

the summands in (13). We define &fy, x rs matrix G’ and an
Mp x rr matrixF’ as

[G'], = [GUJ,fori=1,---,rg
and

[F'], =[FV],fori=1,---
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Ecr [P(x — X|xp = x, G, F)} Psp(xp = x|x)
P
< EgF [P(|NSD|2 + |[Ngp|* > ||v/PsG (Xs(x)—Xs(x)) +NSD||2

+ min [HNRDHLa?mfxx v/ PrF (X (x) — X (x mm))+NRDH2m. (17)

respectively, wherdJ andV are the unitary matrices whoseand

columns are the eigenvectors X s(x) — Xg(x))(Xs(x) — -

Xs(i))T and (Xp(x) — Xg(x mln))(XR( ) — Xn(x mln))'l‘, EgF |:P(X — X|xp # X, G, F)}PSR(XR # x|x)
respectively. Letwnin and pmin be the minimum values 5 5 o

among nonzero eigenvalues (Kg(x) — Xg(z))(Xg(x) — SEG’@F”[P(”NSD” + INap[|” —oIn2f (x, xp)
Xs(Z))T and (XR(X) — XR(Z))(XR(X) — XR(Z))T for all / ] " 2 2

z # X, respectively Using Fact 1 in Appendix-B, we > W Bsemin G +Nsp || [ Nap|| )}PSR(XHXR)' (24)
have Ps|G(Xs(x) — Xg(x )|| > Pswmin||G/|? and Combining (23), (24), and (13), the upper bound on the PEP in
PRHF(XR(X) — X p(xpin) )H > Prwmin||F/)2. Also, from (12) can be derived. In the next subsection, we will derive th

achievable diversity by finally calculating the upper bosiiml
Theorem L, we havity P5G (X (x) — Xs(%)) + Nool[* = (23) and (24).
|1VPswminG’ + Nop > and | VARF (Xa(x) — Xp(™) +

5 P ) ) C. Derivation of Diversity
Nzp||” > [V PawminF’ + Ngpl[2. Then the upper bounds on

the summands in (17) and (20) can be rewritten as Let s = 2v PswminRe{”(G”N;D)}' t = 2V PRimin
Re{tr(F'N}jp) ), ¢ = —0?In2f(x,%), ¢ = w21n2f(x,xR),

Ecrw [P(x — X|xp =x, G, F)} Por(xp = x|x) 2

w = PswminHG”H ’ andh = PR/’[/H‘IIH
N(0,2wa?) andt ~ N(0, 2ha?).

The right-hand side (RHS) of (23) can be rewritten as
Ew_,h[P(t >q—h,s< fwfq)+P(t <qg—ht+s< —w—

[F”||°. Then,s ~
P
< B | P(INsol*+ Nl > | Foooin G4 Nl

. 2 2 % B 2
+ min [ Nap | 0210 2f (x, %), |v/Prfimin '+ Nip | }()Jl) n)] = A+ B wherea = B, [Q(s2 )] B o (5 )]

and and B = Ew,h[ﬁ;hQ<w;rZ:f) EXPZ;;‘:TT;)dt]. Also, the
Eg.r [P(x S R|xp #£ X, G;F)}PSR(XR £ x|x) RHS of (24) can be rewritten as

P , . Eyw[P(s < ¢ —w)]Pr(x — xg)
< Bor | P(INsp||* + [Nap |2 ~o%In 2f (x, xr) /

w—q
=F,|Q(——=)|Psr(x — xR)
>H\/PSwminG/ﬁLNSDH%FHNRD||2)}PSR(X4>XR). (22) [,(v2w02)} " a

q \2
Since multiplying the unitary matrix does not change théstta < ( / pw(x)dz+ B, [eXp <_ M)} )PSR(X%XR)
cal distribution of the matrix with circularly symmetric aplex 0 dwo

Gaussian entries, the entries@f andF’ have the same dis- =C + D (25)
tribution as the entries d& andF, respectively. Therefore, we /

assume ai/p, x rs matrixG” and anM, x rz matrixF” as WhereC = B (x — xg) [ puw(z)dz andD = E,, [exp ( -

q/2

[G"]; =[Gl fori=1,---rs 2 — 422 ) | exp (323 ) Rn(x — xn). Then, the PEP in (12)
and is bounded above by

[FH]Z' = [F]z fori = 1, TR

and then the inequalities in (21) and (22) can be rewritten as Px—%) =} Fa F{ x = X|xp, G, F)} Pon(xr[x)

xr€AL
EG7F{P(X—>5C|XR:x,G,F)}PSR(xR:x|X) L AsB+ Y (04 D) 26)
P a X X
gEG//,F//[P(IINsm2+|NRD||2>||¢PswmmG”+NSD|2 "
Let dy = limyo 024, dp = lima2_,0 LB de =

+min[|\N}m|\2—azln2f(x, ), |\/PR,uminF”+N}w|2:|)] lim,2 0 225, anddp = lim,2_,¢ 222 . Summarizing the re-
sults ofd, dp,dc anddp, we can derive the diversity as fol-
(23) jows.
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Fig. 2. Comparison of BEPs of various decoders in the uncoded single-
antenna DF relay system.
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Fig. 3. Comparison of BEPs of various decoders in the Alamouti-coded
DF relay system.
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Fig. 4. Comparison of BEPs of various decoders in the multiplexing DF
relay system.

P-CSI: Near-ML
P-CSI: Near-ML-2PEP
O P-CSI: Near-ML-2PEP w/ Pgg™
Y P-CSL Near-ML-2PEP w/ SNR™%s#
Uncoded single-antenna DF relay system
- - = Alamouti-coded DF relay system
- Multiplexing DF relay system

BEP

SNR (dB)

Fig. 5. Comparison of BEPs of various maximum diversity achieving
decoders in the DF relay systems with partial CSI when QPSK is
used.

Theorem 2: For the MIMO DF relay systems, both the near-
ML and near-ML-2PEP decoders with partial CSI achieve thigom the derivation of the diversity, especially, (29), Y38nd

diversity rs Mp + min[rgMpg,rrMp] whererg andrp are
the minimum ranks of X s(x) — Xg(z))(Xs(x) — Xg(z))!
and(Xp(x) — Xg(2))(Xg(x) — Xg(z))" forall z # x, re-
spectively. The full diversityMsMp + Mg min[Mg, Mp] is
achieved whemg = Mg andrr = Mg.

Proof : See Appendix-C. ]

V. DISCUSSION AND MONTE CARLO SIMULATIONS

A. Characteristic of Maximum Diversity Achieving Decoders

(33), we can easily find that not only the near-ML and near-ML-
2PEP decoders but also decoders whse xp # %) in (11)
are linearly proportional t&& N R~%# in the high SNR range
achieve the maximum diversity. In this paper, we focus on the
achievable diversity and the idea of two-level-value apin
the near-ML-2PEP decoder in general MIMO DF relay systems
and do not mathematically compare their error performances
On the other hand, to obtain the maximum diversity order,
the maximum diversity achieving decoders need to consider t
transmit signal from the relay, which increases the deapdin
complexity compared with the well-known MD decoder [4] that

In the previous section, we proved that the near-ML arassumes the relay always decodes correctly. While the MD de-
near-ML-2PEP decoders under partial CSI have the diversitgder has the complexity ordéX|.A|*), the maximum diversity
rsMp + min[rs Mg, rr Mp| which is the same as the diver-achieving decoders have the complexity or@f.A|2~). How-
sity of the near-ML decoder under full CSl derived in [4]. 8)s ever, the decoding complexity also can be reduced. Once the
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computations of| Yrp — \/P_RFXR(XR)HQ are completed, we proposed the near-ML-2PEP decoder to save memory. We have
save them td.A|“ memories, then the decoders only need to ddso proved that the near-ML and near-ML-2PEP decoders can
2| A" times computations qfoHXHQ. Specially, the near- achieve the maximum (_:iiversity in t_he MIMO DF relay sys-
ML-2PEP decoder in (10) needs only one additional memory fims- From the simulation results, it was found that the pro-

. Y o NENTE L+ : posed near-ML-2PEP decoder obtains similar BEP performanc
mm"RHYRD 9 PRFXR(XRW ands|A| t@es computatL|ons to the ML and near-ML decoders and much better performance
of |[Y —HX|[", which means the complexity order@|.A|").  than MRC and MD decoders under partial CSI. Furthermore,
For example, for the Alamouti-coded DF relay system, the-Comqt only the average PEP but also other values which satisfy
plexity order isO(|.A[) which is comparable with the PL de-j;;, o f(xk,%p # %) ~ SNR~%~ can be applied to the

coder [16]. Therefore, the proposed near-ML-2PEP deca®r ¢,ear-ML-2PEP decoder with the maximum diversity.
be applied in practice without much complexity.

B. Monte Carlo Simulations APPENDICES

To confirm the analytical results, we give some Monte Carls. Proof of Lemma 1
S|mglat|0ns in th|§ subsection. , For a pair of signalsg andz, the PEP can be derived by taking
First, we cqn5|der the uncoded single-antenna DF relay Séjﬂ' expectation on the coefficient matrix of the SR chankel,
tem as a special case of MIMO DF relay systems_. As_ an exampi&y o -onditional PEP in G) ie.,
where the ML decoder can be used at the destination, we han-
dle the Alamouti-coded DF relay system where the source and Ps N
relay transmit signals by using Alamouti code. Finally, voac Psg(x — z) = Fk |Q (\/Q—QHK(XS(X) - Xs(2))|| )1 .
sider the2 x 2 multiplexing DF relay system to show the case 7
where the ML decoder is difficult to apply at the destination, . )
where2 x 2 multiplexing MIMO construction are used at botrBY usingQ(z) = £ [% exp(—5=ir5)d6, the PEP can be de-
the source and relay. rived as

Figs. 2—4 present the BEP curves of various decoders under . 9
fu2ll and partial CSI on the channel condition aly = 02y = PR,(X‘)Z)E/.EEK{GXP< Ps"K(Xs(x?—QXs(z)) I ﬂd@.
opp = 1 for the uncoded single-antenna, Alamouti-coded, an 7Jo 402 sin* 6
2x2 multiplexing DF relay systems, respectively, where ‘F-CSI (27)
means the full CSI assumption and ‘P-CSI' means the partial
CSI assumption at the destination. The curves with quadratl€t U be a unitary matrix whose columns are the eigenvectors
phase shift keying (QPSK) and 16QAM show that the ML, nea®f (Xs(x) — Xs(2))(Xs(x) — Xs(z))" corresponding to its
ML, near-ML-2PEP decoders have similar BEP performancgigenvalues\;’s, where); # 0 fori =1,---,r andA; = 0 for
under partial CSl and their curves are almost parallel gt of @ =7+ 1,- -+, Ms. Then, we have
the ML and near-ML decoders under full CSl even though there 5
are performance gaps between BEPs of the above decoders un- K (Xs(x)-Xs(2))|

der full CSl and partial CSI. This means that they have theesam :tr(K(XS(x) —Xs(z)) (Xs(x) fXS(z))TKT)
diversity as proved in Theorem 2. We can also observe that the ]
near-ML and near-ML-2PEP decoders have much better perfor- :tr(KUd|ag(>\1, c A 0,y O)UTKT)
mance than the conventional maximum ratio combining (MRC) r
[27] and MD decoder [4] under partial CSI. => AU

Next, we compare various maximum diversity achieving de- =0

coders by Monte Carlo simulations. As discussed in Subs

S%erefore, the expectation in (27) can be rewritten as
tion V.A, the decoders witHimsyp—oo f(X,Xp # X) ~ ' P @7

e ) . AT . . ,,
SN R4k will achieve the maX|.mu[n fi|verS|Ey. és enfimgles, 7PSZL0 A KU B sin2 0 Mg
we present two more decoders: Ak, xr # %) = P = LEk|exp 102 sin2 0 = o Boloa,
maxy z2x Por(x — 2z) and 2) f(X, %Xz # X) = SNR%= orsm 1 Nsin® 04 =2

in (11). We call them near-ML-2PEP wit®22* and near- (28)

ML-2PEP with SNR~%=, respectively. The simulation re-

sults in Fig. 5 show that all of the decoders of the near-Mwhere the equation is due to the fact tha UJ,||* is the sum-
near-ML-2PEP, near-ML-2PEP witR:**, and near-ML-2PEP mation of M i.i.d. exponential random variables with rate pa-
with SN R~%= achieve the maximum diversity in the uncoded@meterl /o5,. By plugging (28) into (27) and using the result
single-antenna, Alamouti-coded, and multiplexing DFyelgs- in [24], the PEP can be derived as

tems. 1[5 sin? 0 Mr
PSR<X%Z>=—/ 11 (ﬁ) d0
™ 0 i=1 Sin 9 —+ =St

do2

VI. CONCLUSION N .
: IR ci (2] :
In this paper, we have presented the ML and near-ML de- —— _ v NE
pap p 52> Auft ,/1+0i2(j)[4(1+cz)] I]
=

coders in the MIMO DF relay systems under partial CSI and i=1k—1
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dMRr—k M -1
L Mp—F Il - 1n¢1(1+cnz) RY.=—c;

where A, = (Mr—yte

andc¢; =

PS%Z’;M. In addition, wherv? — 0, the PEP can be simplified

to

sin® 6

r Mg
_— do
g <sin29+—SB—PSU A )

402

1 3%
hm PSR(x%z)f lim —/
o230 T 0

1 3 . 2w M, - PSOS%R)‘i —Mr
= / (sin°6) Rd@';azloﬂ( )

_! <2:J\]\44§> (H Pso2u); )

Then, we have

1' 2 TI\/[R
A7)

lim In Psp(x — 2)

020

1110'2 :’I"MR.

B. Fact1l

Fact 1: [4] For ann x m matrix A, there exist a unitary

matrix U and a real diagonal matriA = diagA1, -+, An)
such thatAAT = UAUT. We assume\; # 0,i = 1,---,m
)\j = 0,] =m+1,---,n, and)\min = mini:L,..,m
the following inequality holds for ani/x n matrix B as

IBAJ? =" \i|[BUL|* > Awial B[

whereB’ is anl x m matrix constructed byB'|; =
i=1,--,m

[BUJ;,
C. Proof of Theorem 2

For A, by usingQ(z) < exp(—

= s)

4wo?

2?/2),x > 0, we have

2
w . q
= Bu|exp(~ g — ) e (— 575

Sincew is arg M p-Erlang random variable with pdf f, (x) =

)\nxn—l

(29)

exp(—Az)
(n—1)!

in (29) can be rewritten as

q2

w L
Eul o (=32 = 7)]

q2

N /000 )\”x”(nl ixf)(!/\x) ex - e )Jda
oo yn,m—1 @’
:/O %exp(—(ﬁ—i—)\) z)dx

(@) 2" ( 4'7—22 )% ¢ 1
@ o Kol 20/ (— +a
(n =1\ + A o (402 )

where(a) is derived from the equatiof,” z~! exp(—f/x —

)
ve) = 2(8/7)"/2K,(2V/B7).Re(B} > 0,Re{} > 0 and

. pansionk,(z) ~

Ai. Then,

, A = Pswminoy, n = rsMp, the expectation

33

K, (-) is a modified Bessel function [25]. Since

lim,2 g Pop(x—X)= (02)TMR

for the near-ML decoder

li -
%% f(x X) lim(,z% PSR:(O.Q)TSMR
for the near-ML-2PEP decoder
q/o*> = —In2f(x,x) is linearly proportional to— Ino?

in high SNR range for both decoders, then, we have
2\/% (7= + A) > 0. Moreover, by using the asymptotic ex-

T ,—Z 4v%—1 (402 —1)(4v2—9)
e T (l+ M+ T )

in [26], we have

In [Ew{exp<# ‘%)}exp(#)]

dg> lim
020
2™
= lim In T
020 (n—l)' I

7 q
exp<2 rﬂ<4_2+)\)> exp(ﬁ)} Ino?
i | 2205/ e (— gln) exp (- 580)|

— 1'
aéglo Ino?
i [B5 (- o (- )]
aéglo Ino?
A"
. m% nlno? (n—3)n(%) -%
= lim .
020 Ino? In o2 In o2 In o2
(30)

From Lemma 1, we finally achieve thaty > n + dsg =
rgMp+rgMpg for both near-ML and near-ML-2PEP decoders.
For B, we have

B< By [ " b i)
—oo VAarho?
a=h h+t)? — iz
[ ety
—w—h 4wo V4mrho?
B (w+h)?
= B oo~ 07)

hoexp(— -t )
+ex w+h /q P~ +n‘72
p 402 w+h J_,_n 4 Ll 2
w4

w—i—h)}
402 /1"
Sincew andh arergMp andrgy M p-Erlang random variables

with parameter®’swminc, and Priuminopp, respectively and
dp can be lower bounded as

< 2Ew,h |:€Xp (_

dB ZTsMD+TRMD. (31)
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ForC, we have [3]
q" \ngn-1 exp(—Az)

=P 4
C SR(X—>XR)/O 1) dx [4]

_ 7(n, Aq')
= Pp(x — XR)W (5]
P . . [6]

wherey(a, z) = [ e~ "t~ 'dt. By using the series representa-
(—1)igati

tion of y(a, z) = 377,
be rewritten as

S [25], the above integral can 7]

PSR X — XR) > )\q nJ” [8l
C =
(n—1)! ZZ 2' (n+1)
(0]
From Lemma 1l and’ = —o?In2f(x,xp), we have
de > rsMg +rsMp. 32) 0
Next, we considerD. For the near-ML decodery’ = [11]

—0?In2Pr(x — xgr), and thenD can be written as
q/
w 402

E, [exp ( — 1= - exp ( - % which has the same [12]
form as the RHS of (29). Thus, we can use the resultgfi.e.,
[13]
dp > rsMp +rsMg.

On the other handy’ = —o?1n2Ps for the near-ML-2PEP [14]
decoder and then, we have

12

o ! 15]
< 4o a4 [
p oo (a2 oo (1) X rateorm
Lt g fesp (— ) ep (L), P
2 w [P\ 42 T Ty PA7%52)
(33)
[17]
By using the result ofi4, we also achievelp, > rsMp +
TsMR. [18]
From (26) and the derivations df, dg, dc, dp, we have the
diversity
[19]
d > min min[da,dp,dc,dp]
X, XF#X [20]
> rsMp + min[rg Mg, rrMp].
[21]

Since the decoders under partial CSI cannot obtain larger di
versity than the ML decoder under full CSI whose diversit%é
is rsMp + min[rsMpg,rrMp], we have finally proved that

both the near-ML and near-ML-2PEP decoders under partial

CSI achieve the diversity ofsMp + min[rsMp,rgMp] in  [23]
the MIMO DF relay systems. Whery = Mg andrg = Mg,
both achieve the full diversity/s M p + Mg min[Mg, Mp]. [24]
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