DOI QR코드

DOI QR Code

Docosahexaenoic acid (DHA)를 다량 함유하는 해양미생물의 분리 및 동정

Isolation and Identification of DHA-Rich Marine Microorganism

  • 정우철 (경상대학교 해양생명과학과/해양산업연구소) ;
  • 최병대 (경상대학교 해양식품공학과) ;
  • 최종덕 (경상대학교 해양식품공학과) ;
  • 강석중 (경상대학교 해양생명과학과/해양산업연구소)
  • Jeong, U-Cheol (Department of Marine Biology and Aquaculture/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Byeong-Dae (Department of Seafood Science and Technology, Gyeongsang National University) ;
  • Choi, Jong-Duck (Department of Seafood Science and Technology, Gyeongsang National University) ;
  • Kang, Seok-Joong (Department of Marine Biology and Aquaculture/Institute of Marine Industry, Gyeongsang National University)
  • 투고 : 2013.02.06
  • 심사 : 2013.10.08
  • 발행 : 2014.02.28

초록

Docosahexaenoic acid (DHA, 22:6n-3) and ecosapentaenoic acid (20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. It is thought that DHA has important functions in brain and retinal tissues. Thraustochytrids, a group of marine protists, are capable of heterotrophic growth, and are potential omega-3 producers for industrial use, especially the members of the Schizochytrium and Thraustochytrium genera. The aims of this work were to isolate, identify and screen thraustochytrids from 17 different locations. Twenty-three isolates were screened for biomass, total fatty acid (TFA) and DHA content. Analysis of the fatty acid methyl esters revealed four distinct clusters biomass ranged from $8.68-9.36gL^{-1}$, and lipid and DHA contents ranged from $3.11-4.10gL^{-1}$ and $1.05-1.93gL^{-1}$ biomass, respectively. B-12 isolates were screened for biomass ($9.36gL^{-1}$), TFA ($4.10gL^{-1}$) and DHA (47.01%, w/w) content. C-6 isolates were also screened for biomass ($8.92gL^{-1}$), TFA ($3.30gL^{-1}$) and DHA (49.41%, w/w) content. The 18S rRNA gene sequencing results identified Schizochytrium mangrovei as B-12 and Crypthecodium cohnii as C-6.

키워드

참고문헌

  1. Abril RJ, Garrett SG, Zeller WJ, Sander WJ and Mast RW. 2003. Safety assessment of DHA-rich microalgae from Schizochytrium sp. V. Target animal safety/toxicity study in growing swine, Regue. Toxicol Pharmacol 37, 73-82. http://dx.doi.org/10.1016/S0273-2300(02)00030-2.
  2. Bahnweg G. 1979. Studies on the physiology of Thraustochytriales I. Growth requirements and nitrogen nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp. and Labyrinthuloides spp. Veroff Inst Meeresforsch Bremerh 17, 245-268.
  3. Bajpai PK, Bajpai P and Ward OP. 1991a. Optimization of production of docosahexaenoic acid(DHA) by Thraustochytrium aureum ATCC 34304. JAOCS 68, 509-514.
  4. Bajpai PK, Bajpai P and Ward OP. 1991b. Production of docosahexaenoic acid by Thraustochytrium aureum Appl. Microbiol Biotechnol 35, 706-710.
  5. Bajpai P and Bajpai PK. 1993. Eicosapentaenoic acid(EPA) production from microoranisms: a review. J Biotech 30, 161-183. https://doi.org/10.1016/0168-1656(93)90111-Y
  6. Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917. https://doi.org/10.1139/o59-099
  7. Braden LM and Carroll KK. 1986. Dietary ploysaturated fat in relation to mammarial carcinogenesis in rats. Lipids 21, 285-288. https://doi.org/10.1007/BF02536414
  8. Bremer GB. 1995. Lower marine fungi (Labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia 295, 89-95. https://doi.org/10.1007/BF00029115
  9. Bremer GB and Talbot G. 1995. Celluloytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot Mar 38, 37-41.
  10. Castell JD, Sinnhuber RO, Wales JH and Lee DJ. 1972. Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): growth, feed conversion and some gross deficiency symptoms. J Nutr 102, 77-86. https://doi.org/10.1093/jn/102.1.77
  11. Carlson SE. 1996. Arachidonic acid status of human infants: influence of gestational age at birth and diets with very long chain n-3 and n-6 fatty acids. J Nutr 126, 1092-1098.
  12. Cho EJ, Lee JH and Lee KT. 2004. Optimization of enzymatic synthesis condition of structured lipids by response surface methodology. Korean J Food Sci Technol 36, 531-536.
  13. Drats EA and Deose AJ. 1986. Health Effects of Polyunsaturated Fatty Acids in Seafoods. Academic Press, 319.
  14. Duncan DB. 1955. Multiple range and multiple F test. Biometric 11, 1-42. https://doi.org/10.2307/3001478
  15. Fan KW, Vrijmoed LLP and Jones EBG. 2002. Physiological Studies of Subtropical Mangrove Thraustochytrids. Botanica Marina 45, 50-57. http://dx.doi.org/10.1515/BOT.2002.006.
  16. Gill I and Valiverty R. 1997. Polyunsaturated fatty acids: occurrence, biological activities and application. Trends Biotechnol 15, 401-409. https://doi.org/10.1016/S0167-7799(97)01076-7
  17. Goldstein S. 1963. Development and nutrition of new species of Thraustochytrium. Amer. J Bot 50, 271-179. https://doi.org/10.2307/2440021
  18. Haglund O, Luostarinen R, Wallin R, Wibell L and Saldeen T. 1991. The effects of fish oil on triglycerides, cholesterol, fibrinogen and malondialdehyde in humans supplemented with vitamin E. J Nutr 121, 165-169. https://doi.org/10.1093/jn/121.2.165
  19. Hammond BG, Mayhew DA, Naylor MW, Ruecker FR, Mast RW and Sander WJ. 2001. Safety assessment of DHA-rich microalgae from Schizochytrium sp. I. Subchronic rat feeding study. Regul Toxicol Pharmacol 33, 192-204. http://dx.doi.org/10.1006/rtph.2001.1458.
  20. Honda D, Yokochi T, Nakahara T, Erata M and Higashihara T. 1998. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in west Pacific Ocean. Mycol Res 102, 439-448. https://doi.org/10.1017/S0953756297005170
  21. Horrocks LA and Yeo YK. 1999. Health benefits of docosahexaenoic acid(DHA). Phamacol Res 40, 211-225.
  22. Hulan HW, Ackman RG, Ratnayake WMN and Proudfoot FG, 1989. Omega-3 fatty acid levels and general performance of commercial broilers fed practical levels of redfish meal. Poultry Sci 68, 153-162. https://doi.org/10.3382/ps.0680153
  23. Kanazawa A, Teshima SI and Sakamoto M. 1982. Requirements of essential fatty acids for larval ayu. Bull Jap Soc Sci Fish 48, 587-590. https://doi.org/10.2331/suisan.48.587
  24. Kremer JM, Jubiz W and Michalek A. 1987. A fish-oil fatty acid supplementation in active rheumatoid arthritis. Ann Int Med 106, 497-503. https://doi.org/10.7326/0003-4819-106-4-497
  25. Lee HA, Yoo IJ and Lee BH 1997. Research and development trends on ω-3 fatty acid fortified foodstuffs. J Korean Soc Food Sci Nutr 26, 161-174.
  26. Lee JH and Kim HS. 2001. Effects of dietary docosahexaenoic acid levels on the brain phospholipids and serum and liver lipid compositions in rats. Korean J Nutr 34, 132-140.
  27. Lee H, Kizito SA, Weese SJ, Craig-schmidt MC, Lee Y, Wei CI and An H. 2003. Analysis of headspace volatile and oxidized volatile compounds in DHA-enriched fish oil on accelerated oxidative storage. J Food Sci 68, 2169-2177. https://doi.org/10.1111/j.1365-2621.2003.tb05742.x
  28. Miller JD and Jones E. 1983. Observations on the association of thraustochytrid marine fungi with decaying seaweed. Bot Mar 26, 345-351.
  29. Moss ST. 1986. Biology and phylogeny of the labyrinthulales and thraustochytriales. In: Moss ST, ed. The biology of marine fungi. Cambridge University Press, Cambridge, U.K., 105-129.
  30. Ohr LM. 2003. Fats for healthy living. Food Technol 57, 91-96.
  31. Owen PW and Ajay S. 2005. Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry 40, 3627-3652. https://doi.org/10.1016/j.procbio.2005.02.020
  32. Park BS, Hwang BJ, Lee SJ and Lee YC. 1994. Omega-fatty acid. Ukil Cultural Publisher Inc., Korea, 58-59.
  33. Sathe PV, Raghukumar S, Raghukumar C and Sharma S. 1993. Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of brown alga Sargassum cinereum. J Ag Indian J Mar Sci 22, 159-167.
  34. Sharma S, Raghukumar C, Raghukumar S, Sathe-Pathak V and Chandramohan D. 1994. Thraustochytrid and fungal component of marine detritus II. Laboratory studies on decomposition of the brown alga Sargassum cinereum. J Ag J Exp Mar Biol Ecol 175, 227-242. https://doi.org/10.1016/0022-0981(94)90028-0
  35. Singh A and Ward OP. 1997. Microbial production of docosahexaenoic acid (DHA, C22:6). Adv Appl Microbial 45, 27-311
  36. Stenson WF, Cort D, Beeken W, Rodgers J and Burakoff R. 1991. Trial of fish oil supplemented diet in ulcerative colitis. World Rev Nutr Diet 66, 51-71. https://doi.org/10.1159/000419280
  37. Tanaka T, Hirano J and Funada T. 1992. Concentration of docosahexaenoic acid in glyceride by hydrolysis of fish oil with candida cylindracea lipase. J Am Oil Chem Soc 69, 1210-1214. https://doi.org/10.1007/BF02637682
  38. Tanaka M, Ueno A, Kawasaki K and 6 other authors, 1999. Isolation of clustered genes that are notably homologous to the eicosapentaenoic acid biosynthesis gene cluster from the decosahexaenoic acid producing bacterium vibrio marinus strain MP-1. Biotchnol Lett 21, 939-945. https://doi.org/10.1023/A:1005601606929
  39. Thompson JD, Higgins DG and Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalies and weight matrix choice. Nucleic Acids Res 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  40. Tonon T, Harvey D, Larson TR and Graham IA. 2002. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61, 15-24. http://dx.doi.org/10.1016/S0031-9422(02)00201-7.
  41. Ward OP, 1995. Microbial production of long-chain PUFAs. INFORM 6, 683-688.
  42. Watanabe K, Ishikawa C, Ohtsuka I, Kamata M, Tomita M, Yazawa K and Muramatsu H. 1997. Lipid and fatty acid composition of a novel docosahexaenoic acid producing marine bacterium. Lipids 32, 975-978. https://doi.org/10.1007/s11745-997-0127-8
  43. Wong MKM, Vrijmoed LLP and Au DWT. 2005. Abundance of thraustochytrids on fallen decaying leaves of Kandelia candel and mangrove sediments in Futian National Nature Reserve, China. Botanica Marina 48, 374-378. http://dx.doi.org/10.1515/BOT.2005.050.
  44. Wu ST, Yu ST and Lin LP. 2005. Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochemistry 40, 3103-3108. http://dx.doi.org/10.1016/j.procbio.2005.03.007.
  45. Yazawa K. 1996. Production of eicosapentaenoic acid from marine bacteria. Lipids 31, 297-300. https://doi.org/10.1007/BF02637095
  46. Yazawa K, Araki K, Okazaki N, Watanabe K, Ishikawa C, Inoue A, Numao N and Kondo K. 1998. Production of Eicosapentaenoic acid by marine bacteria. J Biochem 103, 5-7.
  47. Yipp MW, Hau CH and Walthew G. 1995. Conservation evaluation of nine Hong Kong mangals. Hydrobiologia 295, 323-333. https://doi.org/10.1007/BF00029139
  48. Yongmanitchai W and Owen PW. 1989. Omega-3 fatty acids: Alternative sources of production. Process Biochem 24, 117-125.
  49. Yokochi T, Honda D, Higashihara T and Nakahara T. 1998. Optimization of docosahexaenoic acid production by Schizochytrium limacium SR21. Appl Microbiol Biotechnol 49, 72-76. https://doi.org/10.1007/s002530051139
  50. Zhu L, Zhang X, Ji L, Song X and Kuang C. 2007. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochemistry 42, 210-214. http://dx.doi.org/10.1016/j.procbio.2006.08.002.