DOI QR코드

DOI QR Code

Development of the Large-Scale Oligonucleotide Chip for the Diagnosis of Plant Viruses and its Practical Use

  • Nam, Moon (Institute of Plant Medicine, Kyungpook National University) ;
  • Kim, Jeong-Seon (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Lim, Seungmo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Chung Youl (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Jeong-Gyu (Department of Applied Biology, Chungnam National University) ;
  • Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science, RDA) ;
  • Lim, Hyoun-Sub (Department of Applied Biology, Chungnam National University) ;
  • Moon, Jae Sun (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Su-Heon (Institute of Plant Medicine, Kyungpook National University)
  • Received : 2013.08.30
  • Accepted : 2013.09.30
  • Published : 2014.03.01

Abstract

A large-scale oligonucleotide (LSON) chip was developed for the detection of the plant viruses with known genetic information. The LSON chip contains two sets of 3,978 probes for 538 species of targets including plant viruses, satellite RNAs and viroids. A hundred forty thousand probes, consisting of isolate-, species- and genus-specific probes respectively, are designed from 20,000 of independent nucleotide sequence of plant viruses. Based on the economic importance, the amount of genome information, and the number of strains and/or isolates, one to fifty-one probes for each target virus are selected and spotted on the chip. The standard and field samples for the analysis of the LSON chip have been prepared and tested by RT-PCR. The probe's specific and/or nonspecific reaction patterns by LSON chip allow us to diagnose the unidentified viruses. Thus, the LSON chip in this study could be highly useful for the detection of unexpected plant viruses, the monitoring of emerging viruses and the fluctuation of the population of major viruses in each plant.

Keywords

References

  1. Abdullahi, I., Gryshan, Y. and Rott, M. 2011. Amplificationfree detection of grapevine viruses using an oligonucleotide microarray. J. Virol. Methods 178:1-15. https://doi.org/10.1016/j.jviromet.2011.07.009
  2. Boonham, N., Tomlinson, J. and Mumford, R. 2007. Microarrays for rapid identification of plant viruses. Annu. Rev. Phytopathol. 45:307-328. https://doi.org/10.1146/annurev.phyto.45.062806.094349
  3. Boonham, N., Walsh, K., Smith, P., Madagan, K., Graham, I. and Barker, I. 2003. Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J. Virol. Methods 108:181-187. https://doi.org/10.1016/S0166-0934(02)00284-7
  4. Bystricka, D., Lenz, O., Mraz, I., Piherova, L., Kmoch, S. and Sip, M. 2005. Oligonucleotide-based microarray: a new improvement in microarray detection of plant viruses. J. Virol. Methods 128:176-182. https://doi.org/10.1016/j.jviromet.2005.04.009
  5. Engel, E. A., Escobar, P. F., Rojas, L. A., Rivera, P. A. and Fiore, N. 2010. A diagnostic oligonu-cleotide microarray for simultaneous detection of grapevine viruses. J. Virol. Methods 163:445-451. https://doi.org/10.1016/j.jviromet.2009.11.009
  6. Everett, K. R., Rees-George, J., Pushparajah, I. P. S., Janssen, B. J. and Luo, Z. 2010. Advantages and disadvantages of microarrays to study microbial population dynamics-a minireview. New Zealand Plant Protect. 63:1-6.
  7. Lapa, S., Mikheev, M., Shchelkunov, S., Mikhailovich, V., Sobolev, A., Blinov, V., Babkin, I., Guskov, A., Sokunova, E., Zasedatelev, A., Sandakhchiev, L. and Mirzabekov, A. 2002. Species-level identification of orthopoxviruses with an oligonucleotide microchip. J. Clin. Microbiol. 40:753-757. https://doi.org/10.1128/JCM.40.3.753-757.2002
  8. Lee, G. P., Min, B. E., Kim, C. S., Choi, S. H., Harn, C. H., Kim, S. U. and Ryu, K. H. 2003. Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit infection Tobamoviruses. J. Virol. Methods 110:19-24. https://doi.org/10.1016/S0166-0934(03)00082-X
  9. Lenz, O., Petrzik, K. and Spak, J. 2008. Investigating the sensitivity of a fluorescence- based microarray for the detection of fruittree virus. J. Virol. Methods 148:96-105. https://doi.org/10.1016/j.jviromet.2007.10.018
  10. Nam, M., Park, S. J., Kim, Y. J., Kim, J. S., Park, C. Y., Lee, J. S., Choi, H. S., Kim, J. S., Kim, H. G. and Lee, S. H. 2012a. First report of Peanut stunt virus on Glycine max in Korea. Plant Pathol. J. 28:330. https://doi.org/10.5423/PPJ.DR.07.2011.0138
  11. Nam, M., Kim, J. S., Park, S. J., Park, D. Y., Lee, J. S., Choi, H. S., Kim, J. S., Kim, H. G., Lim, S. M., Moon, J. S. and Lee, S. H. 2012b. Biological and molecular characterization of soybean yellow common mosaic virus, a new species in the genus Sobemovirus. Virus Res. 163:363-367. https://doi.org/10.1016/j.virusres.2011.08.005
  12. Nicolaisen, M. 2011. An oligonucleotide-based microarray for detection of plant RNA viruses. J. Virol. Methods 173:134-143.
  13. Sainsbury, F., Canizares, M. C. and Lomonossoff, G. P. 2010. Cowpea mosaic virus: The plant virus-based biotechnology workhorse. Annu. Rev. Phytophthol. 48:437-455. https://doi.org/10.1146/annurev-phyto-073009-114242
  14. Tiberini, A., Tomassoli, L., Barba, M. and Hadidi, A. 2010. Oligonucleotide microarray-based and identification of ten major tomato viruses. J. Virol. Methods 168: 133-140. https://doi.org/10.1016/j.jviromet.2010.05.003
  15. Vernet, G. 2002. DNA-chip technology and infectious diseases. Virus Res. 82: 65-71.
  16. Wang, D., Coscoy, L., Zylberberg, M., Avila, P. C., Boushey, H. A., Ganem, D. and DeRisi, J. L. 2002. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. USA 99:15687-15692. https://doi.org/10.1073/pnas.242579699
  17. Wilson, W. J., Strout, C. L., DeSantis, T. Z., Stilwell, J. L., Carrano, A. V. and Andersen, G. L. 2002. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol. Cell Probes 16:119-127. https://doi.org/10.1006/mcpr.2001.0397
  18. Zhang, Y., Yin, J., Li, G., Li, M., Huang, X., Chen, H., Wenjun Zhao, W. and Zhu, S. F. 2010. Oligonucleotide microarray with a minimal number of probes for the detection and identification of thirteen genera of plant viruses. J. Virol. Methods 167:53-60. https://doi.org/10.1016/j.jviromet.2010.03.010

Cited by

  1. First Report of White clover mosaic virus on White Clover (Trifolium repens) in Korea vol.101, pp.8, 2017, https://doi.org/10.1094/PDIS-02-17-0256-PDN
  2. A Review of Detection Methods for the Plant Viruses vol.20, pp.3, 2014, https://doi.org/10.5423/RPD.2014.20.3.173
  3. Genome sequence of a recombinant brassica yellows virus infecting Chinese cabbage vol.160, pp.2, 2015, https://doi.org/10.1007/s00705-014-2258-1
  4. First Report of Cactus virus X Infecting Hylocereus undatus in Korea vol.100, pp.12, 2016, https://doi.org/10.1094/PDIS-06-16-0889-PDN