DOI QR코드

DOI QR Code

ODP Leg 204 Site 1249C와 Site 1251B 퇴적물의 유기물 기원 및 지화학적 특성

The Characteristic and Origin of Organic Matter in the ODP Leg 204 Site 1249C and Site 1251B

  • 심은형 (충남대학교 지질환경과학과) ;
  • 윤혜수 (충남대학교 지질환경과학과) ;
  • 이영주 (한국지질자원연구원) ;
  • 한상영 (충남대학교 지질환경과학과)
  • Shim, Eun-Hyoung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Yun, Hye-Su (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Lee, Young-Joo (Petroelum and Marine Resources Research Division, KIGAM) ;
  • Han, Sang-Young (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 투고 : 2013.11.14
  • 심사 : 2014.01.09
  • 발행 : 2014.02.28

초록

오레곤 대륙 주변부 남부 하이드레이트 릿지에서 실시한 ODP Leg 204에서 회수한 코어 Site 1249C와 Site 1251B의 유기물 기원 및 유기지화학적 특성을 규명하기 위하여 원소분석과 Rock-Eval 열분석 및 동위원소 비 분석을 실시하였다. 분석결과 Site 1249C와 Site 1251B의 유기물은 해양기원 유기물이 우세하며 이러한 결과는 퇴적물의 퇴적당시 환경이 일반적인 해양 환경이었음을 시사한다. 그러나 Rock-Eval 열분석 결과는 다른 분석결과와 반대의 결과를 나타내는데 이러한 결과는 열적으로 미성숙한 유기물이 열분석 과정에서 유기물의 특성이 제대로 반영되지 못하기 때문이다. 따라서 열분석 결과 해석은 다양한 지화학적 결과를 종합하여 해석할 필요가 있다. 코어의 유기물 기원이 동일함에도 불구하고 Site 1249C는 전 구간에서 가스 하이드레이트의 집적이 높은 반면, Site 1251B는 가스 하이드레이트가 일부 구간에서만 소량 발견되었다. 이러한 결과는 하이드레이트 정상부에 위치한 Site 1249C는 가스 하이드레이트 생성에 필요한 심부 열기원 가스가 천부 퇴적물로 이동할 수 있는 이동 통로(Horizon A, BSR2)가 존재하는 것을 시사한다. 그러나 가스 하이드레이트 집적이 미비한 분지 지역의 Site 1251B는 열기원 가스가 심부로부터 이동할 수 있는 가스 이동 통로가 제한적이고 그에 따른 가스 공급이 원활하게 이루어지지 않기 때문에 현장 퇴적물의 속성작용에 의한 생물기원 가스가 우세하여 가스 하이드레이트 생성이 제한적인 것으로 추정된다.

To study biogeochemical characteristics and origin organic matter, sediment samples were taken from Site of 1249C and Stie 1251B of ODP Leg 204. Data of Rock-Eval, isotope, and element analysis generally indicate dominance of marine organic matter in sediments deposited under marine sedimentary environment. Only Rock-Eval data are somewhat different from those of others owing to under-maturation of organic matter. Samples of Site 1249C show high content of gas hydrate, whereas Site 1251B low content of gas hydrate in some intervals of the core. This result may be accounted to different location of two cores and presence of transportation passage (Horizon A, BSR 2) of thermogenic gas in the core, 1249 C. However, Site 1251B Located in the basin of low accumulation of gas hydrate is presumed to be limited in the gas hydrate production. Because not only transportation passage is limited to move thermogenic gas from the core, but also gas supply was not enough. Therefore, the biogenic gas that resulted from diagenesis of there sediment is superior.

키워드

참고문헌

  1. Berner, R.A. and Raiswell, R. (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, v.47, p.855-862. https://doi.org/10.1016/0016-7037(83)90151-5
  2. Berner, R.A. and Raiswell, R. (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, v.12, p.365-368. https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
  3. Berner, R.A. (1984) Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, v.48, p.605-615. https://doi.org/10.1016/0016-7037(84)90089-9
  4. Bttcher, M.E., Rinna, J., Warning, B., Wehausen, R., Howel, M.W., Schnetger, B., Stein, R., K., Brumsack, H.J. and Rullktter, J. (2003) Stable sulfur isotopes indicate net sulfate reduction in near-surface sediments of the deep Arabian Sea. palaeogeogr palaeoclimatol palaeoecol, v.190, p.165-194. https://doi.org/10.1016/S0031-0182(02)00604-1
  5. Caoatay, M.N., Borowski, W.S. and Ternois, Y.G., (2001) Factors affecting the diagenesis of Quaternary sediments at ODP Leg 172 sites in western North Atlantic: evidence from pore water and sediment geochemistry. Chemical Geology, v.175, p.467-484. https://doi.org/10.1016/S0009-2541(00)00348-X
  6. Calvert, S.E. (2004) Beware intercepts: interpreting compositional ratios in multi-component sediments and sedimentary rocks. Organic Geochemistry, v.35, p.981-987. https://doi.org/10.1016/j.orggeochem.2004.03.001
  7. Clague, D., Maher, N. and Paull, C.K., (2001) High-resolution multibeam survey of Hydrate Ridge, offshore Oregone. in Paull, C.K., and Dillon, W.P. (eds.), Natural Gas Hydrate: Occurence, Distribution, and Detection. American Geophysical Union, Geophysical Monograph Series, v.124, p.297-306.
  8. Claypool, G.E., Milkov, A.V., Lee, Y.J., Torres, M.E., Borowski, W.S. and Tomaru, H. (2006) Microbial methanegeneration and gas transport in shallow sediments of an accretionary complex, southern Hydrate Ridge (ODP Leg 204), offshore Oregon, USA. In Trehu, A.M., Bohrmann, G., Torres, M.E., and Colwell, F.S. (eds.) Proceeding of the Ocean Drilling Program, Scientific Results, v.204, p.1-52.
  9. Dean, W.E., Arthur, M.A. and Claypool, G.E. (1986) Depletion of ${\delta}^{13}C$ in Cretaceous marine organic matter: source, diagenetic or environmental signal?. Marine Geology, v.70, p.119-157. https://doi.org/10.1016/0025-3227(86)90092-7
  10. Deines, P. (1980) The isotopic composition of reduced organic carbon. In Fritz P. and Fontes, J.C. (ed.) Handbook of Environmental Isotope Geochemistry. The Terrestrial Environment, Elsevier, Amsterdam, 1A, p.329-406.
  11. Dembicki, H. (1992) The effects of the mineral matrix on the determination of kinetic parameters using modified Rock Eval pyrolysis. Organic Geochemistry, v.18, p.531-539. https://doi.org/10.1016/0146-6380(92)90116-F
  12. Dickens, G.R. (2001) Modelling the global carbon cycle with a gas hydrate capacitor: Significance for the Latest Paleocene Thermal maximum. In: Paull C.K., and Dillon, W.P. (eds.) Natural gas hydrates: Occurrence, Distribution, and Detection. American Geophysical Union, Washington D.C., p.19-38.
  13. Espitalie J., Madec, M. and Tissot, B. (1980) Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. The American Association of Petroleum Geologists Bulletin, v.64, p.59-66.
  14. Goldharber, M.B. and Kaplan, I.R. (1974) The sulfur cycle. The Sea Wiley & Sons, New York, v.5, p.569-655.
  15. Hedges, J.I. and Mann, D.C. (1979) The Lignin geochemistry of marine sediments from the southern Washington coast. Geochimica et Cosmochimica Acta, v.43, p.1809-1818. https://doi.org/10.1016/0016-7037(79)90029-2
  16. Hovland, M., Lysne, D. and Whiticar, M. (1995) Gas hydrate and sediment gas composition, Hole 892A. In: Carson, B., Westbrook, G.K., Musgrave, R.J., and Suess, E. (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, v.146 (Pt1).
  17. Hunt, J.M. (1996) Petroleum Geochemistry and Geology. Freeman, New York, 743p.
  18. Jasper, J.P. and Gagosian, R. (1989) Glacial-interglacial climatically forced ${\delta}^{13}C$ variations in sedimentary organic matter. Nature, v.342, p.60-62. https://doi.org/10.1038/342060a0
  19. Jasper, J.P. and Gagosian, R.B. (1990) The sources and deposition of organic matter in the Late Quaternary Pygmy Basin, Gulf of Mexico. Geochimica et Cosmochimca Acta, v.54, p.117-132. https://doi.org/10.1016/0016-7037(90)90200-5
  20. Katz, B.J. (1983) Limitations of Rock-Eval pyrolysis for typing organic matter. Organic Geochemistry, v.4, p.195-199. https://doi.org/10.1016/0146-6380(83)90041-4
  21. Katz, M.E., Pak, D.K., Dickens, G.R. and Miller, K.G. (1999) The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum, Science, v.286, p.1531-1533. https://doi.org/10.1126/science.286.5444.1531
  22. Kennett, J., Cannariato, K. G., Hendy, I. L., and Behl, R.J. (2003) Methane hydrate in Quaternary climate change: The Clathrate Gun Hypothesis. AGU special publication, v.54, p.216.
  23. Kim, J.H., Park, M.H., Ryu1, B.J., Lee, Y.J., Oh, J.H., Cheong, T.J. and Chang, H.W., (2007) Origin of Organic Matter and Geochemical Variation of Upper Quaternary Sediments from the Ulleung Basin. The Korea Society of Economic and Environmental Geology, v.40, p.605-622.
  24. Kulm, L.D., Suess, E., Moore, J.C., Carson, B., Lewis, B.T., Ritger, S.D., Kadko, D.C., Thornburg, T.M., Embley, R.W., Rugh, W.D., Massoth, G.J., Langseth, M.G., Cochrane, G.R. and Scamman, R.L. (1986) Oregon subduction zone: venting, fauna, and carbonates. Science, v.231, p.561-566. https://doi.org/10.1126/science.231.4738.561
  25. Kvenvolden, K.A. and Lorenson, T.D. (2001) The Global Occurrence of Natural Gas Hydrate. In: Paull C.K., and Dillon, W.P., (eds.) Natural gas hydrates: Occurrence, Distribution, and Detection. American Geophysical Union, Washhington D.C., v.124, p.3-18.
  26. Lee, Y.J. (2005) Gas Hydrate Exploration by using PCS(Pressre Core Sampler): ODP Leg 204. The Korea Society of Economic and Environmental Geology, v.38, p.165-176.
  27. Lee Y.J., Han, H.C., Rye, B.J. and Leg 204 shipboard scientific party. (2003) New gas geochemical proxies to detect gas hydrate: Preliminary results of ODP Leg 204. Journal of the Geological Society of Korea, v.39, p.287-300.
  28. Leventhal, J.S. (1983) An interpretation of carbon and sulfur relationships in Black Sea sediments ac indicators of environments of deposition. Geochimica et Cosmochimica Acta, v.47, p.133-137. https://doi.org/10.1016/0016-7037(83)90097-2
  29. MacKay, M.E. (1995) Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics, v.14, p.1309-1320. https://doi.org/10.1029/95TC02320
  30. MacKay, M.E., Moore, G.F., Cochrane, G.R., Moore, J.C. and Kulm, L.D. (1992) Landward vergence and oblique structural trends in the Oregon margin accretionary prism: implications and effect on fluid flow. Earth Planet, Science Letters, v.109, p.477-491. https://doi.org/10.1016/0012-821X(92)90108-8
  31. Meyers, P.A. (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, v.114, p.289-302. https://doi.org/10.1016/0009-2541(94)90059-0
  32. Meyers, P.A., Silliman, J.E. and Shaw, T.J. (1996) Effects of turbidity flows on organic matter accumulation, sulfate reduction, and methane generation in deep-sea sediments on the Iberia. Organic Geochemistry, v.25, p.69-78. https://doi.org/10.1016/S0146-6380(96)00106-4
  33. Milkov, A.V., Claypool, G.E., Lee, Y.J., Xu, W., Dickens, G.R., Borowski, W.S. and the ODP Leg 204 Scientific Party, (2003) In situ methane concentrations at Hydrate Ridge, offshore Oregon: New constraints on the global gas hydrate inventory from an active margin. Geology, v.31, p.833-836. https://doi.org/10.1130/G19689.1
  34. Milkov A.V., Dickens, G.R., Claypool, G.E., Lee, Y.J., Borowski, W.S., Torres M.E., Xu W., Tomaru H., Trehu, A.M. and Schultheiss, P. (2004) Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core. Earth and Planetary Science Letters, v.222, p.829-843. https://doi.org/10.1016/j.epsl.2004.03.028
  35. Miukhopadhyay, P.K., Wade, J.A. and Kruge, M.A. (1995) Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin. Organic Geochemistry, v.22, p.85-104. https://doi.org/10.1016/0146-6380(95)90010-1
  36. Muller, P.J. (1977) C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta, v.41, p.765-776. https://doi.org/10.1016/0016-7037(77)90047-3
  37. Muller, P.J. and Suess, E. (1979) Productivity, sedimentation rate and sedimentary organic carbon in the ocean 1. Organic carbon preservation. Deep-Sea Research Part A, v.26, p.1347-1362. https://doi.org/10.1016/0198-0149(79)90003-7
  38. Orr, W.L. (1983) Comments on pyrolytic hydrocarbon yields in source-rock evaluation. In: Bjoroy et al. (eds.), Advances in Organic Geochemistry, Wiley & Sons, p.775-787.
  39. Paull, C.K., Matsumoto, R. and Wallace P.J. (1996) Proc. ODP Initial Report, 164: College Station, TX (Ocean Drilling Program), 623p.
  40. Peters, K.E., Sweeney, R.E. and Kaplan, I.R. (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnology and Oceanography, v.23, p.598-604. https://doi.org/10.4319/lo.1978.23.4.0598
  41. Premuzic, E.T., Benkovitz, C.M., Graffney, J.S. and Walsh, J.J. (1982) The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochemistry, v.4, p.63-77. https://doi.org/10.1016/0146-6380(82)90009-2
  42. Sackett, W.M. and Thompson, R.R. (1963) Isotopic organic carbon composition of recent continental derived clastic sediments of eastern Gulf Coast, Gulf of Mexico. The American Association of Petroleum Geologists Bulletin, v.47, p.525-528.
  43. Schoeninger, M.J. and DeNiro, M.J. (1984) Nitrogen and carbon isotope composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, v.48, p.625-639. https://doi.org/10.1016/0016-7037(84)90091-7
  44. Shipboard Scientific Party (2002) Leg 204 Preliminary Report, Ocean Drilling Program, TX, 81p.
  45. Shipley, T.H. and Didyk, B.M. (1982) Initial Reports, Deep Sea Drilling Projects. 66, US Govt Printing Office, 547p.
  46. Sloan, E.D. (1998) Clathrate Hydrates of Natural Gas. 2nd (ed.), Marcel Dekker, New York, 641p.
  47. Stein, R. and Macdonald, R.W. (2003) Geochemical proxies used for organic carbon source identification in Arctic Ocean sediments. In: Stein, R., Macdonald, R.W. (eds.) The Organic Carbon Cycle in the Arctic Ocean. Springer, New York, p.24-32.
  48. Stein, R. (1990) Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Marine Letters, v.10, p.37-44. https://doi.org/10.1007/BF02431020
  49. Stevenson, F.J. and Cheng, C.N. (1972) Organic geochemistry of the Argentine Basin sediments: carbon- nitrogen relationship and Quaternary correlation. Geochemica et Cosmochimica Acta, v.36, p.653-671. https://doi.org/10.1016/0016-7037(72)90109-3
  50. Suess, E., Bohrmann, G., Rickert, D., Kuhs, W. F., Torres, M. E., Trhu, A. and Linke, P. (2002) Properties and fabric of near-surface methane hydrates at Hydrate Ridge, Cascadia margin: Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, May 19-23, p.740-744.
  51. Sweeney, R.E. and Kaplan, I.R. (1980) Natural abundances of $^{15}N$ as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Marine Chemistry, v.9, p.81-94. https://doi.org/10.1016/0304-4203(80)90062-6
  52. Thornton, S.F. and McManus, J. (1994) Applications of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science, v.38, p.219-233.
  53. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence. Springer, Berlin-Heidelberg, 538 p.
  54. Torres, M.E., Bohrmann, G., McManus, J., deAngelis, M.A., Hammond, D., Klinkhammer, G., Suess, E. and Trehu A.M. (1999) Geochemical observations on Hydrate Ridge, Cascadia margin, July 1999. OSU Data Report 174, 87p.
  55. Trhu, A.M. and Bangs, N., (2001) 3-D seismic imaging of an active margin hydrate system, Oregon continental margin, report of cruise TTN112. OSU Data Report, 182p.
  56. Trhu, A.M., Bohrman, G., Rack, F. R. and Leg 204 Shipboard Scientific Party, (2003) ODP, Initial reports, 204 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX USA, p.77845-9547.
  57. Trhu, A.M., Torres, M.E., Moore, G.F., Suess, E. and Bohrmann, G. (1999) Temporal and spatial evolution of a gas-hydrate-bearing accretionary ridge on the Oregon Continental margin. Geology, v.27, p.939-942. https://doi.org/10.1130/0091-7613(1999)027<0939:TASEOA>2.3.CO;2
  58. Vet, I., Hetenyi, M., Demeny, A. and Hertelendi, E. (1994) Hydrogen index as reflecting intensity of sulphide diagenesis in non-bioturbated, shaly sediments. Organic Geochemistry, v.22, p.299-310. https://doi.org/10.1016/0146-6380(94)90176-7
  59. Waples, D.W. (1985) Geochemistry in Petroleum Exploration International Human Resources Development Corporation, Boston, 32-33p.
  60. Westbrook, G.K., Carson, B. and Musgrave, R.J. (1994) ODP Initial Reports, 146 (Pt 1): College Station, TX, Ocean Drilling Program.
  61. Xiaoguo, Y.U., Jiabiao, L.I., Gong, J., Chen, J., Xiaobing, J., Lee, Y.J., Hongliang, L.I. and Jie, X.U. (2006) Stable carbon and nitrogen isotopic composition of gas hydrate-bearing sediment from Hydrate Ridge, Cascadia Margin. Science in China, Series D Earth Sciences, v.49, p.872-880. https://doi.org/10.1007/s11430-006-0872-9

피인용 문헌

  1. Distributions of Organic Matter and Heavy Metals in the Surface Sediment of Jaran Bay, Korea vol.24, pp.1, 2018, https://doi.org/10.7837/kosomes.2018.24.1.078