DOI QR코드

DOI QR Code

The Effect of Urban Trees on Residential Solar Energy Potential

도심 수목이 분산형 주거 태양광에너지 잠재량에 미치는 영향

  • Ko, Yekang (City and Regional Planning Program, School of Urban and Public Affairs, University of Texas at Arlington)
  • 고예강 (텍사스 대학교 알링턴 캠퍼스, 도시 공공 대학원, 도시 및 지역계획 프로그램)
  • Received : 2013.12.06
  • Accepted : 2014.01.21
  • Published : 2014.02.28

Abstract

This study spatially assesses the impact of trees on residential rooftop solar energy potential using urban three-dimensional models derived from Light Detection and Ranging(LiDAR) data in San Francisco, California. In recent years on-site solar energy generation in cities has become an essential agenda in municipal climate action plans. However, it can be limited by neighboring environments such as shade from topography, buildings and trees. Of all these effects, the impact of trees on rooftop photovoltaics(PVs) requires careful attention because improper situation of solar panels without considering trees can result in inefficient solar energy generation, tree removal, and/or increasing building energy demand and urban heat island effect. Using ArcMap 9.3.1, we calculated the incoming annual solar radiation on individual rooftops in San Francisco and the reduced insolation affected by trees. Furthermore, we performed a multiple regression analysis to see what attributes of trees in a neighborhood(tree density, tree heights, and the variance of tree heights) affect rooftop insolation. The result shows that annual total residential rooftops insolation in San Francisco is 18,326,671 MWh and annual total light-loss reduction caused by trees is 326,406 MWh, which is about 1.78%. The annual insolation shows a wide range of values from $34.4kWh/m^2/year$ to $1,348.4kWh/m^2/year$. The result spatially maps the locations that show the various levels of impact from trees. The result from multiple regression shows that tree density, average tree heights and the variation of tree heights in a neighborhood have statistically significant effects on the rooftop solar potential. The results can be linked to municipal energy planning in order to manage potential conflicts as cities with low to medium population density begin implementing on-site solar energy generation. Rooftop solar energy generation makes the best contribution towards achieving sustainability when PVs are optimally located while pursuing the preservation of urban trees.

본 연구는 미국 샌프란시스코시 수목 음영이 개별 건물 지붕 및 옥상에 입사되는 태양에너지 잠재량에 미치는 영향을 LiDAR를 이용한 고해상도 3차원 수치모델을 이용하여 공간적으로 정량화하였다. 최근 분산형 태양광 발전이 기후변화 대응에 중요한 부분으로 주목받고 있으나, 이러한 도심 태양광 발전은 주변부의 지형, 건물, 지붕모양, 수목 등의 음영에 의해 발전량이 제한되는 특성이 있다. 특히 건물 주변의 수목의 경우 도시열섬현상의 저감, 냉난방 에너지 수요량의 절감 등의 순기능과 태양광 발전량 감소의 역기능을 동시에 가지고 있어 두 가지 효용의 상충을 최소화하기 위해 해당 위치에 대한 공간적 분석이 요구된다. 샌프란시스코시 전체 건물 지붕면적의 태양에너지 총량은 년간 18,326,671 MWh으로, 수목의 음영에 의한 감소량은 326,406 MWh로 총량의 1.78%에 해당하였다. 건물지붕의 단위 면적당 일조량은 $34.4kWh/m^2/year$에서 $1,348.4kWh/m^2/year$ 범위로 산출되었다. 본 연구를 통해 도심 수목에 의한 건물별 일조에너지 감소량의 공간자료가 구축되었으며, 개별 건물지붕에 일조량의 변이를 주변 수목의 밀도, 평균수고, 수고의 분산값을 이용한 회귀모델을 통해 설명하였다. 본 연구는 도심수목의 환경적 순기능을 유지함과 동시에 태양광 발전 감소량의 최소화 할 수 있는 방법을 제공함으로써 지속가능한 도시를 구축하는데 기여할 것으로 기대된다.

Keywords

References

  1. Akbari, H., D. M. Kurn, S. E. Bretz and J. W. Hanford(1997) Peak power and cooling energy savings of shade trees. Energy & Buildings 25(2): 139-148. https://doi.org/10.1016/S0378-7788(96)01003-1
  2. Bassett, E. and V. Shandas(2010) Innovation and climate action planning. Journal of the American Planning Association 76(4): 435-450. https://doi.org/10.1080/01944363.2010.509703
  3. Beatley, T.(2007) Envisioning solar cities: Urban futures powered by sustainable energy. Journal of Urban Technology 14(2): 31-46. https://doi.org/10.1080/10630730701531682
  4. California Public Utility Commission(2008) Executive Summary of the California Long Term Energy Efficiency Strategic Plan.
  5. Compagnon, R.(2004) Solar and daylight availability in the urban fabric. Energy & Buildings 36(4): 321-328. https://doi.org/10.1016/j.enbuild.2004.01.009
  6. DeWalle, D. R, G. M. Heisler, and R. E. Jacobs(1983) Forest home sites influence heating and cooling energy. Journal of Forestry 81(2): 84-88.
  7. DeWalle, D. R., and G. M. Heisler(1983) Windbreak effects on air infiltration and space heating in a mobile home. Energy and Buildings 5(4): 279-288. https://doi.org/10.1016/0378-7788(83)90015-4
  8. Donovan, G. H. and D. T. Butry(2009) The value of shade: Estimating the effect of urban trees on summertime electricity use. Energy and Buildings 41(6): 662-668. https://doi.org/10.1016/j.enbuild.2009.01.002
  9. Gadsden, S., M. Rylatt, K. Lomas and D. Robinson(2003) Predicting the urban solar fraction: a methodology for energy advisers and planners based on GIS. Energy and Buildings 35(1): 37-48. https://doi.org/10.1016/S0378-7788(02)00078-6
  10. Hofierka, J. and J. Kanuk(2009). Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renewable Energy 34(10): 2206-2214. https://doi.org/10.1016/j.renene.2009.02.021
  11. Huang, Y. J., H. Akbari, H. Taha and A. H. Rosenfeld(1987) The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Applied Meteorology 26(9): 1103-1116. https://doi.org/10.1175/1520-0450(1987)026<1103:TPOVIR>2.0.CO;2
  12. Ko, Y. and J. D. Radke(2013) The effect of urban form and residential cooling energy use in Sacramento, California. Environment and Planning B: Planning and Design advance online publication, doi:10.1068/b12038p
  13. Ko, Y.(2013) Urban form and residential energy use: a review of design principles and research findings. Journal of Planning Literature 28(4): 327-351. https://doi.org/10.1177/0885412213491499
  14. Kristl, Z. and A. Krainer(2001) Energy evaluation of urban structure and dimensioning of building site using iso-shadow method. Solar Energy 70(1): 23-34. https://doi.org/10.1016/S0038-092X(00)00113-4
  15. Laband, D. N. and J. P. Sophocleus(2009) An experimental analysis of the impact of tree shade on electricity consumption. Arboriculture and Urban Forestry 35(4): 197-202.
  16. Laveme, R. J. and G. M. Lewis(1995) The effect of vegetation on residential energy use in Ann Arbor, Michigan. Journal of Arboriculture 22(5): 235.
  17. Levinson, R., H. Akbari, M. Pomerantz and S. Gupta(2009) Solar access of residential rooftops in four California cities. Solar Energy 83(12): 2120-2135. https://doi.org/10.1016/j.solener.2009.07.016
  18. McPherson, E. G. and J. R. Simpson(2003) Potential energy savings in buildings by an urban tree planting programme in California. Urban Forestry & Urban Greening 2(2): 73-86. https://doi.org/10.1078/1618-8667-00025
  19. McPherson, E. G., L. P. Herrington and G. M. Heisler(1988) Impacts of vegetation on residential heating and cooling. Energy and Buildings 12(1): 41-51. https://doi.org/10.1016/0378-7788(88)90054-0
  20. Pandit, R. and D. N. Laband(2010) Energy savings from tree shade. Ecological Economics 69(6): 1324-1329. https://doi.org/10.1016/j.ecolecon.2010.01.009
  21. Parker, J. H.(1983) Landscaping to reduce the energy used in cooling buildings. Journal of Forestry 81(2): 82-105.
  22. Simpson, J. R.(2002) Improved estimates of tree-shade effects on residential energy use. Energy and Buildings 34(10): 1067-1076. https://doi.org/10.1016/S0378-7788(02)00028-2
  23. Simpson, J. R. and E. G. McPherson(1996) Potential of tree shade for reducing residential energy use in California. Journal of Arboriculture 22(1): 10-18.
  24. Suri, M. and J. Hofierka(2004) A new GIS-based solar radiation model and its application to photovoltaic assessments. Transactions in GIS 8(2): 175-190. https://doi.org/10.1111/j.1467-9671.2004.00174.x
  25. Tooke, T. R., N. C. Coops, J. A. Coops and M. J. Meitner(2011) Tree structure influences on rooftop-received solar radiation. Landscape and Urban Planning 102(2): 73-81. https://doi.org/10.1016/j.landurbplan.2011.03.011
  26. Torcellini, P., Pless, S., M. Deru and D. Crawley(2006) Zero energy buildings: a critical look at the definition. National Renewable Energy Laboratory, U.S. Department of Energy.
  27. Vardimon, R.(2011) Assessment of the potential for distributed photovoltaic electricity production in Israel. Renewable Energy 36(2): 591-594. https://doi.org/10.1016/j.renene.2010.07.030
  28. Wiginton, L. K., H. T. Nguyen and J. M. Pearce(2010) Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Computers, Environment and Urban Systems 34(4): 345-357. https://doi.org/10.1016/j.compenvurbsys.2010.01.001
  29. http://data.sfgov.org/
  30. http://www.nycsolarmap.com/
  31. http://solarmap.seoul.go.kr/
  32. http://www.eia.gov/
  33. http://www.energystar.gov/
  34. http://webhelp.esri.com/