Coronary three vessel disease: hydrodynamic simulations including the time-dependence of the microvascular resistances

  • Harmouche, Majid (Department of Thoracic and Cardiovascular Surgery, Rennes University Hospital PontChaillou) ;
  • Anselmi, Amedeo (Department of Thoracic and Cardiovascular Surgery, Rennes University Hospital PontChaillou) ;
  • Maasrani, Mahmoud (Faculty of Sciences, Lebanese University) ;
  • Mariano, Chiara (Politecnico di Torino) ;
  • Corbineau, Herve (Department of Thoracic and Cardiovascular Surgery, Rennes University Hospital PontChaillou) ;
  • Verhoye, Jean-Philippe (Department of Thoracic and Cardiovascular Surgery, Rennes University Hospital PontChaillou) ;
  • Drochon, Agnes (University of Technology of Compiegne, UMR CNRS 7338)
  • Received : 2013.05.07
  • Accepted : 2015.02.06
  • Published : 2014.12.25


This paper presents some simulations of fluxes and pressures in the coronary network, in the case of very severe coronary disease (several stenoses on the left branches and total occlusion of the right coronary artery). In that case, coronary artery bypass graft surgery is the commonly performed procedure. However, the success of the intervention depends on many factors. Modeling of the coronary circulation is thus important since it can help to understand the influence of all these factors on the coronary haemodynamics. We previously developed an analog electrical model that includes the eventual presence of collateral flows, and can describe the different revascularization strategies (two grafts, three grafts, ...). The aim of the present work is to introduce in our simulations the time-dependence of the coronary microvascular resistances, in order to better represent the effect of the systolic ventricular contraction (which induces an elevation of the resistances because the vessels are squeezed).



  1. Geven, M., Bohte, V., Aarnoudse, W., Van Den Berg, P., Rutten, M., Pijls, N. and Van De Vosse, F. (2004), "A physiologically representative in vitro model of the coronary circulation", Physiol. Measure., 25(4), 891-904.
  2. Glineur, D., Poncelet, A., El Khoury, G., D'hoore, W., Astarci, P., Zech, F., Noirhomme, P. and Hanet, C. (2007), "Fractional flow reserve of pedicled internal thoracic artery and saphenous vein grafts 6 months after bypass surgery", Europe J. Cardio-Thoracic Surgery, 31(3), 376-382.
  3. Kajiya, F., Tsujioka, K., Ogasawara, Y., Wada, Y., Matsuoka, S., Kanazawa, S., Hiramatsu, O., Tadaoka, S.I., Goto, M. and Fujiwara, T. (1987), "Analysis of flow characteristics in poststenotic regions of the human coronary artery during bypass graft surgery", Circulation, 76(5), 1092-1100.
  4. Karapanos, N., Suddendorf, S., Li, Z., Huebner, M., Joyce, L. and Park, S. (2011), "The impact of competitive flow on distal coronary flow and on graft flow during coronary artery bypass surgery", Interact. CardioVascul. Thoracic Surg., 12(6), 993-997.
  5. Kawasuji, M., Sakakibara, N., Takemura, H., Tedoriya, T., Ushijima, T. and Watanabe, Y. (1996), "Is internal thoracic artery grafting suitable for a moderately stenotic coronary artery?", J. Thorac. Cardiovasc. Surgery, 112(2), 253-259.
  6. Maasrani, M., Abouliatim, I., Harmouche, M., Verhoye, J.Ph., Corbineau, H. and Drochon, A. (2011), "Patients' specific simulations of coronary fluxes in case of three-vessel disease", J. Biomed. Sci. Eng., 4(01), 34-45.
  7. Mates, R., Gupta, R., Bell, A. and Klocke, F. (1978), "Fluid dynamics of coronary artery stenosis", Circul. Res., 42(1), 152-162.
  8. Miyamoto, S., Fujita, M. and Sasayama, S. (2000), "Bidirectional function of coronary collateral channels in humans", Int J. Cardiol., 75(2), 249-252.
  9. Ozturk, N., Sucu, N., Comelekoglu, U., Yilmaz, B.C., Aytacoglu, B.N. and Vezir, O. (2013), "Pressure applied during surgery alters the biomechanical properties of human saphenous vein graft", Heart Vessels, 28(2), 237-245.
  10. Pietrabissa, R., Mantero, S., Marotta, T. and Menicanti, L. (1996), "A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses", Med. Eng. Phys., 18(6), 477-484.
  11. Pijls, N., Van Son, J., Kirkeeide, R., De Bruyne, B. and Gould, K. (1993), "Experimental basis of determining maximum coronary, myocardial and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty", Circulation, 87(4), 1354-1367.
  12. Shimizu, T., Hirayama, T., Suesada, H., Ikeda, K., Ito, S. and S. Ishimaru, S. (2000), "Effect of flow competition on internal thoracic artery graft: postoperative velocimetric and angiographic study", J. Thorac. Cardiovascul. Surg., 120(3), 459-465.
  13. Spaan, J., Kolyva, C., Van Der, Wijngaard, J., Ter Wee, R., Van Horssen, P., Piek, J. and Siebes, M. (2008), "Coronary structure and perfusion in health and disease", Phil. Trans. Roy. Soc., 366(1878), 3137-3153.
  14. Stooker, W., Gok, M., Sipkema, P., Niessen, H., Baidoshvili, A., Westerhof, N., Jansen, E., Wildevuur, C. and Eijsman, L. (2003), "Pressure-diameter relationship in the human greater saphenous vein", Ann. Thorac. Surg., 76(5), 1533-1538.
  15. Suga, H., Sagawa, K. and Shoukas, A. (1973), "Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio", Circulation Res., 32(3), 314-322.
  16. Verhoye, J., Ph., Abouliatim, I., Drochon, A., De Latour, B., Leclercq, Ch., Leguerrier, A. and Corbineau, H. (2007), "Collateral blood flow between left coronary artery bypass grafts and chronically occluded right coroanry circulation in patients with triple vessel disease. Observations during complete revascularisation of beating hearts", Europe J. Cardio-Thoracic Surg., 31, 49-54.
  17. Wang, J., Tie, B., Welkowitz, W., Kostis, J. and Semmlow, J. (1989), "Incremental network analogue model of the coronary artery", Med. Biol. Eng. Comput., 27(4), 416-422.

Cited by

  1. Impact of Revascularization on the Distal to Proximal Pressure Ratio in Case of Multiple Coronary Stenoses vol.14, pp.3, 2021,