References
- ALGAS. 1998. India National Report on Asia Least Cost Greenhouse Gas Abatement Strategy. Asia Development Bank and United Nations Development Programme, Manila, Philippines.
- Bellarby, J., R. Tirado, A. Leip, F. Weiss, J. P. Lesschen, and P. Smith. 2013. Livestock greenhouse gas emissions and mitigation potential in Europe. Global Chang. Biol. 19:3-18. https://doi.org/10.1111/j.1365-2486.2012.02786.x
- Chhabra, A., K. R. Manjunath, S. Panigrahy, and J. S. Parihar. 2009. Spatial pattern of methane emissions from Indian livestock. Curr. Sci. 96:683-689.
- EPA. 1994. International Anthropogenic Methane Emissions: Estimates for 1990, EPA-230-R-93-010. U.S. Environmental Protection Agency, Global Change Division, Office of Air and Radiation, Washington, DC.
- FAOSTAT. 2013. FAO statistics. Food and Agricultural Organization of the United Nations. http://faostat.fao.org/ site/573/default.aspx#ancor
- FAO. 2006. Livestock's long shadow. Environmental Issues and Options. Food and Agriculture Organization of the United Nations, Rome, Italy.
- FAO. 2010. Greenhouse gas emissions from the dairy sector - a life cycle assessment. Food and Agriculture Organization of the United Nations, Rome, Italy.
- Garg, A., S. Bhattacharya, P. R. Shukla, and V. K. Dadhwal. 2001. Regional and sectoral assessment of greenhouse gas emissions in India. Atmos. Environ. 35:2679-2695. https://doi.org/10.1016/S1352-2310(00)00414-3
- Garg, A. and P. R. Shukla. 2002. Emission inventory of India. Tata McGraw Hill Publishing Company Limited, New Delhi, India.
- Gerber, P., T. Vellinga, C. Opio, and H. Steinfeld. 2011. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 139:100-108. https://doi.org/10.1016/j.livsci.2011.03.012
- Gupta, P. K., A. K. Jha, S. Koul, P. Sharma, V. Pradhan, V. Gupta, C. Sharma, and N. Singh. 2007. Methane and nitrous oxide emission from bovine manure management practices in India. Environ. Pollut. 146:219-224. https://doi.org/10.1016/j.envpol.2006.04.039
- IPCC. 1996. Revised 1996 IPCC guidelines for national greenhouse gas inventories. (Ed. J. T. Houghton, L. G. Meira. Filho, B. Lim, K. Treanton, I. Mamaty, Y. Bonduki, D. J. Griggs, and B. A. Callender). UK Meteorological Office, Brackbell, UK.
- IPCC. 2006. IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme (Ed. H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe), IGES, Japan.
- IPCC. 2007. Summary for policymakers. In: Climate change 2007: the physical science basis. Contribution of working group to the fourth assessment report of the intergovernmental panel on climate change (Ed. S. D. Solomon, M. Qin, Z. Manning, M. Chen, K. B. Marquis, M. T. Averyt, and H. L. Miller), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Ji, E. S. and K. H. Park. 2012. Methane and nitrous oxide emissions from livestock agriculture in 16 local administrative districts of Korea. Asian-Aust. J. Anim. Sci. 25:1768-1774. https://doi.org/10.5713/ajas.2012.12418
- Patra, A. K. 2012a. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ. Monit. Assess. 184:1929-1952. https://doi.org/10.1007/s10661-011-2090-y
- Patra, A. K. 2012b. Estimation of methane and nitrous oxide emissions from Indian livestock. J. Environ. Monit. 14:2673-2684. https://doi.org/10.1039/c2em30396e
- Singhal, K. K., M. Mohini, A. K. Jha, and P. K. Gupta. 2005. Methane emission estimates from enteric fermentation in Indian livestock: Dry matter intake approach. Curr. Sci. 88:119-127.
- Swamy, M. and S. Bhattacharya. 2006. Budgeting anthropogenic greenhouse gas emission from Indian livestock using country specific emission coefficients. Curr. Sci. 91:1340-1353.
- United Nations. 2013. Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2012 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.227.
- Zervas, G. and E. Tsiplakou. 2012. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock. Atmos. Environ. 49:13-23. https://doi.org/10.1016/j.atmosenv.2011.11.039
Cited by
- Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro vol.13, pp.3, 2015, https://doi.org/10.5424/sjar/2015133-7467
- Effects of Adaptation of In vitro Rumen Culture to Garlic Oil, Nitrate, and Saponin and Their Combinations on Methanogenesis, Fermentation, and Abundances and Diversity of Microbial Populations vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.01434
- Predicting enteric methane emission in sheep using linear and non-linear statistical models from dietary variables vol.56, pp.3, 2016, https://doi.org/10.1071/AN15505
- Methane emissions from paddy cultivation and livestock farming in Sarawak, Malaysia vol.103, pp.2261-236X, 2017, https://doi.org/10.1051/matecconf/201710305007
- Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems vol.22, pp.4, 2017, https://doi.org/10.1007/s11027-015-9691-7
- Effect of black cumin seeds on growth performance, nutrient utilization, immunity, gut health and nitrogen excretion in broiler chickens vol.97, pp.11, 2017, https://doi.org/10.1002/jsfa.8237
- Impact of phytogenic feed additives on growth performance, nutrient digestion and methanogenesis in growing buffaloes vol.58, pp.6, 2018, https://doi.org/10.1071/AN15610
- Exploring diet-dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach vol.8, pp.4, 2014, https://doi.org/10.1080/21553769.2015.1063550
- Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants vol.3, pp.None, 2014, https://doi.org/10.3389/fvets.2016.00039
- Livestock Greenhouse Gases Emissions Under Grazing Conditions in the TropicLivestock Greenhouse Gases Emissions Under Grazing Conditions in the Tropic vol.10, pp.1, 2018, https://doi.org/10.22490/21456453.2685
- Effect of Punica granatum and Tecomella undulata supplementation on nutrient utilization, enteric methane emission and growth performance of Murrah male buffaloes vol.28, pp.2, 2014, https://doi.org/10.22358/jafs/109237/2019
- Plants extract and bioactive compounds on rumen methanogenesis vol.94, pp.4, 2014, https://doi.org/10.1007/s10457-019-00411-6
- A Holistic Manure Management Model by Leveraging Dairy Cooperative Network vol.16, pp.2, 2014, https://doi.org/10.1177/0973005220950520
- Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity vol.10, pp.12, 2020, https://doi.org/10.3390/agriculture10120628
- Review: Methanogens and methane production in the digestive systems of nonruminant farm animals vol.15, pp.1, 2014, https://doi.org/10.1016/j.animal.2020.100060
- Methane emissions from livestock in East Asia during 1961−2019 vol.7, pp.1, 2021, https://doi.org/10.1080/20964129.2021.1918024
- Effect of dietary supplementation of Emblica officinalis fruit pomace on methane emission, ruminal fermentation, nutrient utilization, and milk production performance in buffaloes vol.28, pp.14, 2014, https://doi.org/10.1007/s11356-020-12008-z
- In vitro digestibility and methane gas production of fodder from improved cowpea ( L.) and groundnut (Arachis hypogaea L.) varieties vol.13, pp.None, 2021, https://doi.org/10.1016/j.sciaf.2021.e00897