DOI QR코드

DOI QR Code

Effects of Benzoic Acid and Dietary Calcium:Phosphorus Ratio on Performance and Mineral Metabolism of Weanling Pigs

  • Gutzwiller, A. (Federal Research Institute Agroscope) ;
  • Schlegel, P. (Federal Research Institute Agroscope) ;
  • Guggisberg, D. (Federal Research Institute Agroscope) ;
  • Stoll, P. (Federal Research Institute Agroscope)
  • Received : 2013.08.22
  • Accepted : 2013.11.19
  • Published : 2014.04.01

Abstract

In a $2{\times}2$ factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions.

Keywords

References

  1. Adeola, O., O. A Olukosi, J. A. Jendza, R. N. Dilger, and M. R. Bedford. 2006. Response of growing pigs to Peniophora lycii- and Escherichia coli-derived phytases or varying ratios of calcium to total phosphorus. Anim. Sci. 82:637-644. https://doi.org/10.1079/ASC200676
  2. Agroscope Liebefeld-Posieux (ALP). 2004. Apports alimentaires recommandes et tables de la valeur nutritive des aliments pour porcs. LMZ, Centrale des Moyens d'Enseignement Agricole, Zollikofen, Switzerland.
  3. Arnett, T. 2003. Regulation of bone cell function by acid-base balance. Proc. Nutr. Soc. 62:511-520. https://doi.org/10.1079/PNS2003268
  4. Budde, R. A. and T. D. Crenshaw. 2003. Chronic metabolic acid load induced by changes in dietary electrolyte balance increased chloride retention but did not compromise bone in growing swine. J. Anim. Sci. 81:197-208.
  5. Buhler, K., A. Liesegang, B. Bucher, C. Wenk, and J. Broz. 2010. Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs. J. Anim. Sci. 88:3363-3371. https://doi.org/10.2527/jas.2009-1940
  6. Canh, T. T., A. J. A. Aarnink, Z. Mroz, A. W. Jongbloed, J. W. Schrama, and M. W. A. Verstegen. 1998. Influence of electrolyte balance and acidifying calcium salts in the diet of growing-finishing pigs on urinary pH, slurry pH and volatilisation from slurry. Livest. Prod. Sci. 56:1-13. https://doi.org/10.1016/S0301-6226(98)00148-1
  7. Cooper, C. W., L. J. Deftos, and J. T. Potts. 1971. Direct measurement of in vivo secretion of pig thyrocalcitonin by radioimmunoassay. Endocrinology 88:747-754. https://doi.org/10.1210/endo-88-3-747
  8. Crenshaw, T. D. 2001. Calcium, phosphorus, vitamin D, and vitamin K in Swine nutrition. In: Swine Nutrition, 2nd Ed. (Ed. A. J. Lewis and L. L. Southern). CRC Press, Boca Raton. pp. 187-212.
  9. Fammatre, C. A., D. C. Mahan, A. W. Fetter, A. P. Grifo, and J. K. Judy. 1977. Effects of dietary protein, calcium and phosphorus levels for growing and finishing swine. J. Anim. Sci. 44:65-71.
  10. Gizzi, G., P. Thyregod, C. von Holst, G. Bertin, K. Vogel, M. Faurschol-Isaksen, R. Betz, R. Murphy, and B. Brandt. 2008. Determination of phytase activity in feed: Interlaboratory study. J. AOAC Int. 91:259-267.
  11. Grace, N. D., C. W. Rogers, E. C. Firth, T. L. Faram, and H. L. Shaw. 2003. Digestible energy intake, dry matter digestibility and effect of calcium intake on bone parameters of thoroughbred weanlings in New Zealand. NZ Vet. J. 51:165-173. https://doi.org/10.1080/00480169.2003.36359
  12. Guggenbuhl, P., A. Seon, A. Pinon Quintana, and C. Simoes Nunes. 2007. Effects of dietary supplementation with benzoic acid ($VevoVitall^{(R)}$) on the zootechnical performance, the gastrointestinal microflora and the ileal digestibility of the young pig. Livest. Sci. 108:218-221. https://doi.org/10.1016/j.livsci.2007.01.068
  13. Gutzwiller, A., H. D. Hess, A. Adam, D. Guggisberg, A. Liesegang and P. Stoll. 2011. Effects of a reduced calcium, phosphorus and protein intake and of benzoic acid on calcium and phosphorus metabolism of growing pigs. Anim. Feed Sci. Technol. 168:113-121. https://doi.org/10.1016/j.anifeedsci.2011.03.015
  14. Hall, D. D., G. L. Cromwell, and T. S. Stahly. 1991. Effects of dietary calcium, phosphorus, calcium:phosphorus ratio and vitamin K on performance, bone strength and blood clotting status of pigs. J. Anim. Sci. 69:646-655.
  15. Hansen, C. F., G. Sorensen, and M. Lyngbye, 2007. Reduced diet crude protein, benzoic acid and inulin reduced ammonia, but failed to influence odor emission from finishing pigs. Livest. Sci. 109:228-231. https://doi.org/10.1016/j.livsci.2007.01.133
  16. Koch, M. E., D. C. Mahan, and J. R. Corley. 1984. An evaluation of various biological characteristics in assessing low phosphorus intake in weanling swine. J. Anim. Sci. 59:1546-1556.
  17. Kornegay, E. T. 2001. Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. In: Enzymes in Farm Animal Nutrition (Ed. M. R. Bedford and G. G. Partridge). CAB International, Wallingford, UK. pp. 237-271.
  18. Lantzsch, H. J., S. Wjst, and W. Drochner. 1995. The effect of dietary calcium on the efficacy of microbial phytase in rations for growing pigs. J. Anim. Physiol. Anim. Nutr. 73:19-26. https://doi.org/10.1111/j.1439-0396.1995.tb00399.x
  19. Lei, X. G., P. K. Ku, E. R. Miller, M. T. Yokoyama, and D. E. Ullrey. 1994. Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J. Anim. Sci. 72:139-143.
  20. Letourneau-Montminy, M. P., A. Narcy, M. Magnin, D. Sauvant, J. F. Bernier, C. Pomar, and C. Jondreville. 2010. Effect of reduced dietary calcium concentration and phytase supplementation on calcium and phosphorus utilization in weanling pigs with modified mineral status. J. Anim. Sci. 88:1706-1717. https://doi.org/10.2527/jas.2008-1615
  21. Letourneau-Montminy, M. P., C. Jondreville, D. Sauvant, and A. Narcy. 2012. Meta-analysis of phosphorus utilization by growing pigs: Effect of dietary phosphorus, calcium and exogenous phytase. Animal 6:1590-1600. https://doi.org/10.1017/S1751731112000560
  22. Littledike, E. T. and J. Goff. 1987. Interactions of calcium, phosphorus, magnesium and vitamin D that influence their status in domestic meat animals. J. Anim. Sci. 65:1727-1743.
  23. National Research Council. 2012. Nutrient Requirements of Swine. 11th Ed. National Academy Press, Washington, DC.
  24. Paditz, K., H. Kluth, and M. Rodehutscord. 2004. Relationship between graded doses of three microbial phytases and digestible phosphorus in pigs. Anim. Sci. 78:429-438.
  25. Patience, J. F. and R. K. Chaplin. 1997. The relationship among dietary undetermined anion, acid-base balance, and nutrient metabolism in swine. J. Anim. Sci. 75:2445-2452.
  26. Qian, H., E. T. Kornegay, and D. E. Conner. 1996. Adverse effects of wide calcium:phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. J. Anim. Sci. 74:1288-1297.
  27. Reinhardt, G. A. and D. C. Mahan. 1986. Effects of various calcium:phosphorus ratios at low and high dietary phosphorus for starter, grower and finishing swine. J. Anim. Sci. 63:457-466.
  28. Sauer, W., M. Cervantes, J. Yanez, B. Araiza, G. Murdoch, A. Morales, and R. T. Zijlstra. 2009. Effect of dietary inclusion of benzoic acid on mineral balance in growing pigs. Livest. Sci. 122:162-168. https://doi.org/10.1016/j.livsci.2008.08.008
  29. Suttle, N. 2010. Mineral Nutrition of Livestock. 8th Ed. CABI, Wallingford, GB.
  30. Torrallardona, D., I. Badiola, and J. Broz. 2007. Effects of benzoic acid on performance and ecology of gastrointestinal microbiota in weanling piglets. Livest. Sci. 108:210-213. https://doi.org/10.1016/j.livsci.2007.01.062
  31. Traylor, S. L., G. L. Cromwell, and M. D. Lindemann. 2005. Bioavailability of phosphorus in meat and bone meal for swine. J. Anim. Sci. 83:1054-1061.

Cited by

  1. Effect of dietary calcium level and source on mineral utilisation by piglets fed diets containing exogenous phytase vol.101, pp.5, 2016, https://doi.org/10.1111/jpn.12582
  2. Adverse effects on growth performance and bone development in nursery pigs fed diets marginally deficient in phosphorus with increasing calcium to available phosphorus ratios vol.98, pp.10, 2014, https://doi.org/10.1093/jas/skaa325
  3. Evaluation of interactive effects of phytase and benzoic acid supplementation on performance, nutrients digestibility, tibia mineralisation, gut morphology and serum traits in male broiler chickens vol.19, pp.1, 2014, https://doi.org/10.1080/1828051x.2020.1846468