DOI QR코드

DOI QR Code

Piglets' Surface Temperature Change at Different Weights at Birth

  • Received : 2013.08.15
  • Accepted : 2013.10.07
  • Published : 2014.03.01

Abstract

The study was carried out in order to verify the effects of piglets' weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets' surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (-0.824 and -0.815) with STB and after 15 min from birth. The piglet's surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

Keywords

References

  1. Antunes, R. C. 2007. Planejando a reposicao de reprodutores (macho e femea) e impacto sobre a eficiencia reprodutiva da granja. Rev. Bras. Reprod. Anim. 31:41-46.
  2. Baxter, E. M., S. Jarvis, R. B. D'Eath, D. W. Ross, S. K. Robson, M. Farish, I. M. Nevison, A. B. Lawrence, and S. A. Edwards. 2008. Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology 69:773-783. https://doi.org/10.1016/j.theriogenology.2007.12.007
  3. Brown-Brandl, T. M., R. A. Eigengerg, J. A. Nienaber, and S. D. Kachman. 2001. Thermoregulatory profile of a newer genetic line of pigs. Livest. Prod. Sci. 71:253-260. https://doi.org/10.1016/S0301-6226(01)00184-1
  4. Damgaard, L. H., L. Rydhmer, P. Lovendahl, and K. Grandinson. 2003. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J. Anim. Sci. 81:604-610.
  5. Ferreira, R. A., J. Chiquieri, P. P. Mendonca, T. V. Melo, M. D. Cordeiro, and R. T. R. N. Soares. 2007. Comportamento e parametros fisiologicos de leitoes nas primeiras 24 horas de vida. Cienc. Agrotec. 31:1845-1849. https://doi.org/10.1590/S1413-70542007000600036
  6. Gondret, F., L. Lefaucheur, I. Louveau, B. Lebret, X. Pichodo, and Y. Le Cozler. 2005. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livest. Prod. Sci 93:137-146. https://doi.org/10.1016/j.livprodsci.2004.09.009
  7. Herpin, P. and J. Le Dividich. 1995. Thermoregulation and the environment. In: The Neonatal Pig (Ed. M. Varley). Development and Survival. CAB International, Wallingford, pp. 57-98.
  8. Herpin, P., M. Damon, and J. Le Dividich. 2002. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78:25-45. https://doi.org/10.1016/S0301-6226(02)00183-5
  9. Herpin, P., A. Vincent, and M. Damon. 2004. Effect of breed and body weight on thermoregulatory abilities of European (Pietrain${\times}$(Landrace${\times}$Large White)) and Chinese (Meishan) piglets at birth. Livest. Prod. Sci. 88:17-26. https://doi.org/10.1016/j.livprodsci.2003.11.006
  10. Jensen, T., L. J. Pedersen, and E. Jorgensen. 2011. Hypothermia in neonatal piglets: Interactions and causes of individual differences. J. Anim. Sci. 89:2073-2085. https://doi.org/10.2527/jas.2010-3022
  11. Lay Junior D. C., R. L. Matteri, J. A. Carroll, T. J. Fangman, and T. J. Safranski. 2002. Preweaning survival in swine. J. Anim. Sci. 80:E74-E86.
  12. Lima, A. L., R. F. M. Oliveira, J. L. Donzele, H. C. Fernandes, P. H. R. F. Campos, and M. V. L. Antunes. 2011. Resfriamento do piso da maternidade para porcas em lactacao no verao. Rev. Bras. Zootec. 40:804-811. https://doi.org/10.1590/S1516-35982011000400014
  13. Lossec, G., P. Herpin, and J. Le Dividich. 1998. Thermoregulatory responses of the newborn pig during experimentally induced hypothermia and rewarming. Exp. Physiol. 83:667-678. https://doi.org/10.1113/expphysiol.1998.sp004148
  14. Malmkvist, J., L. J. Pedersen, B. M. Damgaard, K. Thodberg, E. Jorgensen, and R. Labouriau. 2006. Does floor heating around parturition affect the vitality of piglets born to loose housed sows? Appl. Anim. Behav. Sci. 99:88-105. https://doi.org/10.1016/j.applanim.2005.10.007
  15. Manno, M. C., R. F. M Oliveira, J. L. Donzele, A. S. Ferreira, W. P. Oliveira, K. R. S. Lima, and R. G. M. Vaz. 2005. Efeito da temperatura ambiente sobre o desempenho de suinos dos 15 aos 30 kg. R. Bras. Zootec. 34:1963-1970. https://doi.org/10.1590/S1516-35982005000600021
  16. Mendonca, A. B. 2010. Conforto termico em suinos visando melhoria na producao e qualidade do produto final. Postgraduate Monography, Universidade Castelo Branco, Campinas, SP, Brazil.
  17. Merks, J., D. Ducro-Steverink, and H. Feitsma 2000. Management and genetic factors affecting fertility in sows. Reprod. Domest. Anim. 35:261-266. https://doi.org/10.1046/j.1439-0531.2000.00269.x
  18. Mount, L. E. 1959. The metabolic rate of the new-born pig in relation to environmental temperature and to age. J. Physiol. 147:333-345. https://doi.org/10.1113/jphysiol.1959.sp006247
  19. Orozco-Gregorio, H., D. Mota-Rojas, M. Alonso-Spilsbury, M. Gonzalez-Lozano, M. Trujillo-Ortega, S. A. Olmos-Hernandez, P. Sanchez-Aparicio, R. Ramarez-Necoechea, R. Hernandez-Gonzalez, R. Uribe-Escamilla, and D.Villanueva-Garcia. 2007. Importance of blood gas measurements in perinatal asphyxia and alternatives to restore the acid base balance status to improve the newborn performance. Am. J. Biochem. Biotechnol. 3:131-140. https://doi.org/10.3844/ajbbsp.2007.131.140
  20. Pandorfi, H., I. J. O. Silva, D. J. Moura, and K. B. Sevegnani. 2005. Microclima de abrigos escamoteadores para leitoes submetidos a diferentes sistemas de aquecimento no periodo de inverno. Rev. Bras. Eng. Agric. Amb. 9:99-106. https://doi.org/10.1590/S1415-43662005000100015
  21. Panzardi, A., T. Bierhals, A. P. G. Mellagi, M. L. Bernardi, F. P. Bortolozzo, and I. Wentz. 2009. Survival of piglets according to physiological parameters at birth. In: Proceedings of the 8th International Conference on Pig Reproduction (Banff, Canada). (in press).
  22. Panzardi, A., M. L. Bernardi, A. P. Mellagi, T. Bierhals, F. P. Bortolozzo, and I. Wentz. 2013 Newborn piglet traits associated with survival and growth performance until weaning. Prev. Vet. Med. 110:206-213. https://doi.org/10.1016/j.prevetmed.2012.11.016
  23. Pastorelli, G. M., M. Neil, and I. Wigren. 2009. Body composition and muscle glycogen contents of piglets of sows fed diets differing in fatty acids profile and contents. Livest. Sci. 123:329-334. https://doi.org/10.1016/j.livsci.2008.11.023
  24. Quesnel, H., C. Farmer, and N. Devillers. 2012. Colostrum intake: Influence on piglet performance and factors of variation. Livest. Sci. 146:105-114. https://doi.org/10.1016/j.livsci.2012.03.010
  25. Quiniou, N., J. Dagorn, and D. Gaudre D. 2002. Variation of piglet's birth weight and consequences on subsequent performance. Livest. Prod. Sci. 78:63-70. https://doi.org/10.1016/S0301-6226(02)00181-1
  26. SAS Institute Inc. 2001. SAS/STAT user's guide: Version 6. 6th ed. SAS Institute Inc., Cary, North Carolina.
  27. Sorensen, D., A. Vernersen, and S. Andersen. 2000. Bayesian analysis of response to selection: A case study using litter size in Danish Yorkshire pigs. Genetics 156:283-295.
  28. Souza, P. 2007. O frio e sua influencia no comportamento do suino. Porkworld. Access: http://editora-animalworld.com.br/ porkworld/artigos/post/o-frio-e-suainfluencia-no-comportamento-do-suino_10086.
  29. Tuchscherer, M., B. Puppe, A. Tuchscherer, and U. Tiemann. 2000. Earley identification of neonates at risktraits of newborn piglets with respect to survival. Theriogenology 54:371-388. https://doi.org/10.1016/S0093-691X(00)00355-1
  30. Van Rens, B. T. T. M., G. De Koning, R. Bergsma, and Van Der Lende T. 2005. Preweaning piglet mortality in relation to placental efficiency. J. Anim. Sci. 83:144-151.
  31. Yan, P. S. and S. Yamamoto. 2000. Relationship between thermoregulatory responses and heat loss in piglets. J. Anim. Sci. 71:505-509.

Cited by

  1. SOWS AND PIGLETS THERMAL COMFORT: A COMPARATIVE STUDY OF THE TILES USED IN THE FARROWING HOUSING vol.36, pp.6, 2016, https://doi.org/10.1590/1809-4430-eng.agric.v36n6p996-1004/2016
  2. Infrared Thermal Image for Assessing Animal Health and Welfare vol.2, pp.3, 2014, https://doi.org/10.14269/2318-1265/jabb.v2n3p66-72
  3. Are Larger Litters a Concern for Piglet Survival or An Effectively Manageable Trait? vol.10, pp.2, 2014, https://doi.org/10.3390/ani10020309
  4. L‐arginine supplementation during the final third of gestation improves litter uniformity and physical characteristics of neonatal piglet thermoregulation vol.104, pp.2, 2014, https://doi.org/10.1111/jpn.13305
  5. Impact of sow lactation feed intake on the growth and suckling behavior of low and average birthweight pigs to 10 weeks of age vol.4, pp.2, 2014, https://doi.org/10.1093/tas/txaa057
  6. Practical oxygen therapy for newborn piglets vol.68, pp.6, 2014, https://doi.org/10.1080/00480169.2020.1778580
  7. A multisource image fusion method for multimodal pig-body feature detection vol.14, pp.11, 2014, https://doi.org/10.3837/tiis.2020.11.008
  8. Vitality in relation to litter size of crossbred pigs and the effect of the terminal sire line vol.61, pp.15, 2014, https://doi.org/10.1071/an20424
  9. A novel multisource pig-body multifeature fusion method based on Gabor features vol.32, pp.1, 2014, https://doi.org/10.1007/s11045-020-00744-x
  10. IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends vol.5, pp.1, 2014, https://doi.org/10.3390/bdcc5010010
  11. Suitability of Different Thermometers for Measuring Body Core and Skin Temperatures in Suckling Piglets vol.11, pp.4, 2021, https://doi.org/10.3390/ani11041004
  12. Physiological and Behavioral Mechanisms of Thermoregulation in Mammals vol.11, pp.6, 2014, https://doi.org/10.3390/ani11061733
  13. The influence of hypothermia prevention by application of skin moisture absorbent on the value of body temperature, body weight and blood parameters in piglets vol.73, pp.5, 2014, https://doi.org/10.1590/1678-4162-12371
  14. Infrared Thermography of the Mammary Gland in Sows with Regard to Health and Performance vol.11, pp.10, 2014, https://doi.org/10.3390/agriculture11101013
  15. Piglet Viability: A Review of Identification and Pre-Weaning Management Strategies vol.11, pp.10, 2014, https://doi.org/10.3390/ani11102902