DOI QR코드

DOI QR Code

An Analytic Study on Structural Stability according to Boundary Conditions and H-section Column Lengths Made of An Ordinary Grade Structural Steels (SS 400) at High Temperatures

일반구조용 강재(SS 400)기둥부재의 경계조건과 부재 길이변화에 따른 고온 내력의 해석적 연구

  • Kwon, In-Kyu (Department of Fire Protection Engineering, Kangwon National University)
  • Received : 2013.11.29
  • Accepted : 2014.02.14
  • Published : 2014.02.28

Abstract

Steel column is very important an structural element in steel framed building and plays a key role in sustataining the applied external load. Generally, the fire resistance performance of steel column has been executed by application of fire standard and vertical furnace having a limitation in height. Therefore, the fire resistance test was conducted with a H-section column having 3500 mm in length and hinge to hinge boundary condition. And the fire protective material derived from the fire test can be applied to any kind of boundary conditions and lengths. However, it is hard to determine the fire resistance. In this paper, to make sure the structural stability of them at high temperature according to various boundary conditions and lengths of H-section column, an analysis was done by using the mechanical properties and an heat transfer theory.

강구조 건축물의 기둥부재 내화성능은 접합부의 경계조건과 기둥부재의 길이에 따라 변화되지만, 내화성능 평가는 실험장비의 제약과 기술적 요인으로 인하여 힌지단과 3500 mm 길이 조건으로 이루어지고 있다. 그러나 실제 강구조물에 적용되는 기둥부재는 부지조건과 설계조건에 따라 다양한 경계조건과 길이의 변화를 가져올 수 있으며, 이에 대한 내화성능의 평가는 대상으로 고온 시의 재료특성과 해석적 이론을 바탕으로 고온 시 구조적 성능을 평가하여, 경계조건과 길이 변화에 따른 내화성능의 기본 자료를 도출하였다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport, "Building Act", Korea (2013).
  2. NFPA 5000, "Building Construction and Safety Code" (2012).
  3. R. M. Lawson, "Fire Engineering Design of Steel and Composite Building", Journal of Constructional Steel Research, Vol. 57, No. 12, pp. 1233-1247 (2001). https://doi.org/10.1016/S0143-974X(01)00051-7
  4. F. Wald, J. Chlouba, A. Uhlir, P. Kallerova and M. Stujberova, "Temperatures during Fire Tests on Structure and Its Prediction According to Eurocodes", Fire Safety Journal, Vol. 44, No. 1, pp. 125-146 (2009).
  5. S. B. Kim, S. K. Choi, C. N. Lee and S. S. Kim, "Study on the Fire Resistance Performance of the TSC Beam", Journal of Korean Society of Steel Construction, Vol. 18, No. 1, pp. 113-122 (2006).
  6. Z. F. Huang, K. H. Tan, W. S. Toh and G. H. Pung, "Fire Resistance of Composite Columns with Embedded I-Section Steel-Effect of Section Size and Load Level", Journal of Constructional Steel Research, Vol. 64, No. 3, pp. 312-325 (2008). https://doi.org/10.1016/j.jcsr.2007.07.002
  7. V. Kodur, M. Dwaikat and R. Fike, "High-Temperature Properties of Steel for Fire Resistance Modelling of Structures", Journal of Materials in Civil Engineering, Vol. 22, No. 5, pp. 423-434 (2010). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000041
  8. W. Y. Wang and G. Q. Li, "Fire-Resistance Study of Restrained Steel Columns with Partial Damage to Fire Protection", Fire Safety Journal, Vol. 44, No. 8, pp. 1088-1094 (2009). https://doi.org/10.1016/j.firesaf.2009.08.002
  9. I. K. Kwon, "A Study on the Properties of SM 400 for Evaluation of Structural Stability at High Temperature", Journal of Korean Institute of Fire Science and Engineering, Vol. 27, No. 4, pp. 7-12 (2013). https://doi.org/10.7731/KIFSE.2013.27.4.7
  10. Swedish Institute of Steel Construction, "Fire Engineering Design of Steel Structures", Stockholm, Sweden (1976).
  11. D. C. Jang, "Architectural Structure Dynanics", Kimoondang, Seoul (2005).
  12. I. K. Kwon, "Development of Analytic Program for Calculation of Fire Resistant Performance on Steel Structures", Journal of the Regional Association of Architectural Institute of Korea, Vol. 11, No. 3, pp. 201-208 (2009).

Cited by

  1. Evaluation of Structural Stability at High Temperature for H-section Beams Made of Ordinary Strength Steels by Analytic Method vol.28, pp.2, 2014, https://doi.org/10.7731/KIFSE.2014.28.2.076