DOI QR코드

DOI QR Code

2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석

Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012

  • 정승필 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 임윤규 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 김기훈 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 한상옥 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 권태영 (강릉원주대학교 대기환경과학과)
  • Jung, Sueng-Pil (High-impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research) ;
  • Lim, Yun-Kyu (High-impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research) ;
  • Kim, Ki-Hoon (High-impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research) ;
  • Han, Sang-Ok (High-impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research) ;
  • Kwon, Tae-Yong (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2013.12.23
  • 심사 : 2014.02.05
  • 발행 : 2014.02.28

초록

겨울철 동해안 강수 현상에 대한 규명을 위하여 라디오존데를 활용한 특별관측을 2012년 1월 5일부터 2월 29일까지 실시하였고, 이 연구는 대기의 불안정을 나타내는 다양한 변수를 활용하여 강수 사례의 분석을 수행하였다. 그 결과, 강수가 발생할 때 지표면(1000 hPa)에서 중층(약 750 hPa)까지의 상당온위가 증가하는 것을 볼 수 있었고, 이러한 대기층(1000~750 hPa)은 불안정을 일으키기에 충분한 수준의 수증기를 함유하고 있었다. 대류가용잠재에너지의 시간적인 변화를 살펴본 결과 강수가 발생하였을 때 증가하는 것을 볼 수 있었고, 연직바람쉬어의 경우에서도 대류가용잠재에너지와 마찬가지로 강수 기간 동안 상승하여 일정수준 이상의 값을 유지하는 것을 확인할 수 있었다. 강수에 따른 대기 구조의 상세한 분석을 위하여 지상 원격 탐사 자료와 지상 관측 자료를 활용하여 분석을 수행하였다. 또한 가강수량과 바람벡터를 이용하여 가강수량플럭스를 계산하였다. 가강수량플럭스와 강수량은 북동풍 계열의 바람이 발생하였을 때 높은 관계성을 보였다. 그 결과 동해안영역에서 발생하는 강수 현상에서는 풍계와 같은 역학적인 작용의 이해가 중요한 것으로 판단되었다.

The special observation using Radiosonde was performed to investigate precipitation events over the east coast of Korea during the winter season from 5 January to 29 February 2012. This analysis focused on the various indices to describe the characteristics of the atmospheric instability. Equivalent Potential Temperature (EPT) from surface (1000 hPa) to middle level (near 750 hPa) was increased when the precipitation occurred and these levels (1000~750 hPa) had moisture enough to cause the instability of atmosphere. The temporal evolution of Convective Available Potential Energy (CAPE) appeared to be enhanced when the precipitation fell. Similar behavior was also observed for the temporal evolution of Storm Relative Helicity (SRH), indicating that it had a higher value during the precipitation events. To understand a detailed structure of atmospheric condition for the formation of precipitation, the surface remote sensing data and Automatic Weather System (AWS) data were analyzed. We calculated the Total Precipitable Water FLUX (TPWFLUX) using TPW and wind vector. TPWFLUX and precipitation amount showed a statistically significant relationship in the north easterly winds. The result suggested that understanding of the dynamical processes such as wind direction be important to comprehend precipitation phenomenon in the east coast of Korea.

키워드

참고문헌

  1. Chang, H., Franczyk, J., and Kim, C., 2009, What is responsible for increasing flood risk? The case of Gangwon province, Korea. Natural Hazards, 48, 339-354. https://doi.org/10.1007/s11069-008-9266-y
  2. Cho, K.-H., Cho, Y.-J., and Kwon, T.-Y., 2004, Characteristics of air mass related with precipitation events in Yeongdong region. Asia-Pacific Journal of Atmosphere Sciences, 40, 381-393. (in Korean)
  3. Chung, K.-B., Kim, J.-Y., and Kwon, T.-Y., 2004, Characteristics of lower-Tropospheric wind related with winter precipitation in the Yeongdong region. Asia-Pacific Journal of Atmosphere Sciences, 40, 369-380. (in Korean)
  4. Davies-Jones, R.P., Burgess, D., and Foster, M., 1990, Test of helicity as a tornado forecast parameter. 16th Conference on Severe Local Storms, American Meteorological Society, 56-60.
  5. Jung, S.-H., Im, E.-S., and Han, S.-O., 2012, The effect of topography and sea surface temperature on heavy snowfall in the Yeongdong region and a case study with high resolution WRF simulation. Asia-Pacific Journal of Atmospheric Sciences, 48, 259-273. https://doi.org/10.1007/s13143-012-0026-2
  6. Kim, D.-W., Kim, Y.-H., Kim, K.-H., Shin, S.-S., Kim, D.-K., Hwang, Y.-J., Park, J.-I., Choi, D.-Y., and Lee, Y.-H., 2012a, Atmospheric vertical structure of heavy rainfall system during 2010 summer intensive observation period over Seoul metropolitan area. Journal of Korean Earth Science Society, 33, 148-161. (in Korean) https://doi.org/10.5467/JKESS.2012.33.2.148
  7. Kim, D.-W., Kim, Y.-H., Kim, K.-H., Shin, S.-S., Kim, D.-K., Hwang, Y.-J., Park, J.-I., Choi, D.-Y., and Lee, Y.-H., 2012b, Effect of urbanization on rainfall events during the 2010 summer intensive observation period over Seoul metropolitan area. Journal of Korean Earth Science Society, 33, 219-232. (in Korean) https://doi.org/10.5467/JKESS.2012.33.3.219
  8. Kwon, T.-Y., Kim, J.-S., and Kim, B.-G., 2013, Comparison of the properties of Yeongdong and Yeongseo heavy rain. Atmosphere, 23, 245-264. (in Korean) https://doi.org/10.14191/Atmos.2013.23.3.245
  9. Lee, J.G. and In, S.-R., 2009, A numerical sensitivity experiment of the downslope windstorm over the Yeongdong region in relation to the inversion layer of temperature. Atmosphere, 19, 331-344. (in Korean)
  10. Lee, J.G. and Kim, Y.J., 2008, A numerical case study examining the orographic effect of the Taebaek mountains on snowfall distribution over the Yeongdong area. Atmosphere, 18. (in Korean)
  11. Lee, J.G. and Lee, J.S., 2003, A numerical study of Yeongdong heavy snowfall events associated with easterly. Asia-Pacific Journal of Atmosphere Sciences, 39, 475-490. (in Korean)
  12. Lee, J.-S., Kwon, T.-Y., and Kim, D.-R., 2006, Statistical verification of precipitation forecasts from MM5 for heavy snowfall events in Yeongdong region. Atmosphere, 16, 125-139. (in Korean)
  13. Lim, Y.-K., Han, S.-O., Jung, S.-P., and Seong, J.-H., 2013, The Characteristic analysis of precipitable water vapor according to GPS observation baseline determination. Journal of Korean Earth Science Society, 34, 1-7. (in Korean) https://doi.org/10.5467/JKESS.2013.34.1.1
  14. Moncrieff, M. and Miller, M.J., 1976, The dynamics and simulation of tropical cumulonimbus and squall lines. Quarterly Journal of the Royal Meteorological Society, 102, 373-394. https://doi.org/10.1002/qj.49710243208
  15. NEMA, 2012, Annual disaster report for 2011. National Emergency Management Agency, 973 p. (in Korean)
  16. Paul J. Neiman, Hughes, M., Moore, B.J., Ralph, F.M., and Sukovich E.M., 2013, Sierra barrier jets, atmospheric rivers, and precipitation characteristics in northern California: A composite perspective based on a network of wind profilers. Monthly Weather Review, 141, 4211-4233. https://doi.org/10.1175/MWR-D-13-00112.1
  17. WMO, 2006, WMO guide to meteorological instruments and methods of observation, WMO publication no. 8. World Meteorological Organization, 47 p.
  18. WMO, 2011, Instruments and observing methods report no. 107. World Meteorological Organization, 101 p.
  19. Yoo, C.S., Shin, C.-K., and Yoon, Y.-N., 2004, Estimation and analysis of pecipitation water. Journal of the Korean Society of Civil Engineers, 24, 413-420. (in Korean)

피인용 문헌

  1. Quality Evaluation of Wind Vectors from UHF Wind Profiler using Radiosonde Measurements vol.24, pp.1, 2015, https://doi.org/10.5322/JESI.2015.24.1.133
  2. A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong vol.36, pp.4, 2015, https://doi.org/10.5467/JKESS.2015.36.4.301
  3. Interannual variability of winter precipitation linked to upper ocean heat content off the east coast of Korea pp.08998418, 2017, https://doi.org/10.1002/joc.5354
  4. Case Study of Ground-Based Glaciogenic Seeding of Clouds over the Pyeongchang Region vol.2018, pp.1687-9317, 2018, https://doi.org/10.1155/2018/9465923