DOI QR코드

DOI QR Code

풍력 블레이드의 결빙에 의한 공력특성 및 성능 변화

Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade

  • Park, Ji-Ho (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Myong, Rho-Shin (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University)
  • 투고 : 2013.11.07
  • 심사 : 2014.01.22
  • 발행 : 2014.02.01

초록

추운 기후에서 운영되는 풍력터빈 시스템의 표면에 발생한 결빙으로 인하여 공기역학적 성능이 크게 저하될 수 있다. 이러한 결빙은 양력감소 및 항력증가를 야기하고, 발전효율에 부정적인 영향을 미치게 된다. 이로 인하여 풍력발전기의 성능저하 또는 과부하, 무게중심의 변화에 따른 과도진동, 결빙파편이 지상으로 떨어질 경우의 안전성 문제, 계기의 결빙으로 인한 계기 측정오차, 최악의 경우 풍력 시스템 정지 등의 문제가 발생한다. 본 연구에서는 결빙증식이 풍력 발전기의 공력특성에 미치는 영향을 CFD 기법을 이용해 분석하였다. 또한 결빙증식 결과를 바탕으로 BEM 기법을 적용시켜 삼차원 블레이드에 대한 공력성능을 계산하였다. 결빙의 두께는 상대적인 속도차이에 의해 블레이드 중심에서 끝단으로 갈수록 증가함을 알 수 있었고, 공기의 속도가 결빙증식에 미치는 주요 인자임을 확인하였다.

A significant degradation in the aerodynamic performance of wind turbine system can occur by ice accretion on the surface of blades operated in cold climate. The ice accretion can result in performance loss, overloading due to delayed stall, excessive vibration associated with mass imbalance, ice shedding, instrumental measurement errors, and, in worst case, wind turbine system shutdown. In this study, the effects of ice accretions on the aerodynamic characteristics of wind turbine blade sections are investigated on the basis of modern CFD method. In addition, the computational results are used to predict the performance of three-dimensional wind turbine blade system through the blade element momentum method. It is shown that the thickness of ice accretion increases from the root to the tip and the effects of icing conditions such as relative wind velocity play significant role in the shape of ice accretion.

키워드

참고문헌

  1. Pankaj, K. J., Dwight B., and Sven S., "Wind Turbines under Atmospheric Icing Conditions - Ice Accretion Modeling, Aerodynamics, and Control Strategies for Mitigating Performance Degradation," 50th AIAA Aerospace Sciences Meeting, 2012.
  2. Fernando, V., Marcelo, R., and Adrian I,. "Numerical Study of Flow Iced Wind Turbine Airfoil," Engineering Applications of Fluid Mechanics, Vol. 6, No. 1, 2012, pp. 39-45. https://doi.org/10.1080/19942060.2012.11015401
  3. Barber, S., Wang, Y., Jafari, S., Chokani, N., and Abhari, R. S., "The Impact of Ice Formation on Wind Turbine Performance and Aerodynamics," European Wind Energy Conference, 2010.
  4. Reid, T., Baruzzi, G., Ozcer, I., Switchenko, D., and Habashi, W. G, "Development of a Novel Ice Sensing and Active De-icing Method for Wind Turbines," 51th AIAA Aerospace Sciences Meeting, 2013.
  5. Myong, R. S., "Atmospheric Icing Effects on Aerodynamics of Wind Turbine Blade," ASME IMECE2013, 2013.
  6. Park, J. H., Jung, K. Y., Myong, R. S., "Computational Prediction of Icing Effects on Aerodynamic Characteristics of a Wind Turbine Blade," Journal of Computational Fluids Engineering, Vol. 18, No. 3, 2013, pp. 51-59. https://doi.org/10.6112/kscfe.2013.18.3.051
  7. ANSYS V13.0 FLUENT Basic, TSNE, 2011.
  8. Yi, T. H., Kim, C. W., "Sensitivity Study of Turbulence Models and Mesh Resolutions for the Airfoil of a Wind Turbine Blade," The Korean Society for Aeronautical & Space Sciences Fall Conference, 2012, pp. 1011-1016.
  9. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E., Wind Energy Handbook, John Wiley & Sons, New York, 2001.
  10. Muhammad, S. V., "Numerical Analysis of Atmo- spheric Ice Accretion on Wind Turbine Blades & Resultant Performance Losses," The Norwegian Research Council, Department of Technology, Narvik University College, Norway, 2010.
  11. Kim, B. S., Kim, M. E. and Lee, Y. H., "Predicting the Aerodynamic Characteristics of 2D Airfoil and the Performance of 3D Wind Turbine using a CFD Code," Transactions of the KSME B, Vol. 32, No. 7, 2011, pp. 549-557. https://doi.org/10.3795/KSME-B.2008.32.7.549
  12. Jung, S. K., Shin, S. M., Myong, R. S., and Cho, T. H., "An Efficient CFD-based Method for Aircraft Icing Simulation Using a Reduced Order Model," Journal of Mechanical Science and Technology, Vol. 25, 2011, pp. 703-711. https://doi.org/10.1007/s12206-011-0118-4
  13. Shin, H. B., Choi, W., Seo, S. J., Ryu, J. B., "Study of Icing Accretion on The 2D Airfoil," (in Korean) Korean Society of Computational Fluid Engineering Spring Conference, 2009, pp. 21-26.
  14. Jung, S. K., Shin, S. M., Myong, R. S., Cho, T. H., Jeong, H. H. and Jung, J. H., "Ice Accretion Effect on the Aerodynamic Characteristics of KC-100 Aircraft," 48th AIAA Aerospace Sciences Meeting, AIAA-2010-1237, 2010.
  15. Kind, R. J., Potapczuk, M. G., Feo, A., Golia, C. and Shah, A. D., "Experimental and Computational Simulation of In-Flight Icing Phenomena," Progress in Aerospace Sciences, Vol. 34, 1998, pp. 257-345. https://doi.org/10.1016/S0376-0421(98)80001-8
  16. Gent, R. W., Dart, N. P. Cansdale, J. T., "Aircraft Icing," Philosophical Transactions of the Royal Society of London, Vol. 358, 2000, pp. 2873-2911. https://doi.org/10.1098/rsta.2000.0689
  17. Bourgault, Y., Habashi, W. G., Dompierre, J., Baruzzi, G. S., "A Finite Element Method Study of Eulerian Droplets Impingement Models," International Journal for Numerical Methods in Fluids, Vol. 4, 1999, pp. 429-499.
  18. NTI Solutions User Manual, Newmerical Technologies Inc., 2010.
  19. Chang, S. M., Lee, J. H., "Aerodynamic Design of 10 kW-level HAWT Rotor Blades," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 35, No. 7, 2007, pp. 884-890. https://doi.org/10.5139/JKSAS.2007.35.10.884
  20. Kim, K. P., Lee, M. W., Kim, M. O., Lee, Y. H., "Design of 5kW-class Small-scale Wind Turbine Using In-house Code POSEIDON," Wind Energy Journal, Vol. 1, No. 1, 2010, pp. 26-32.