DOI QR코드

DOI QR Code

Seismic Noise Reduction Using Micro-Site Array Stacking

미소-위치 배열 중합을 이용한 지진파의 잡음제거

  • Choi, Hun (Dept. of Electronic Engineering, Dong-Eui University) ;
  • Sohn, Sang-Wook (HVDC C&P Research Team, LSIS Co. Ltd.) ;
  • Bae, Hyeon-Deok (Dept. of Electrical Engineering, Chungbuk National University)
  • Received : 2013.02.14
  • Accepted : 2013.12.20
  • Published : 2014.03.01

Abstract

This paper presents a new approach to improve the signal to noise ratio (SNR) for local seismic disaster preventing system in densely populated area. The seismic data measured in the local site includes various sensing noises (offset or measurement noise) and man-made/natural noises (road and rail traffic noise, rotating or hammering machinery noise, human activity noise such as walking and running, wind/atmospheric pressure-generated noise, etc.). These additive noises are different in time and frequency characters. The proposed method uses 3-stages processing to reduce these different additive noises. In the first stage, misalignment offset noise are diminished by time average processing, and then the second and third stages, coherent/incoherent noises such as man-made/natural noises are suppressed by array stacking. In addition, we derived the theoretical equation of the SNR gain improved by the proposed method. To evaluate the performance of the proposed method, computer simulations were performed with real seismic data and test equipment generated data as the input.

Keywords

1. 서 론

2011년 3월에 일어난 동일본 대지진은 전 세계에 지진재해에 대한 두려움과 지진조기경보시스템 구축의 필요성을 새롭게 각인시킨 계기가 되었다. 지진의 공포는 우리가 전혀 인식할 시간적 여유 없이 갑자기 엄청난 재앙을 당하는 데 있다. 여러 자연재해 현상 중 발생시각에서 피해가 수반 되는 시간까지의 시간차를 여유시간이라 하면, 태풍의 경우 수일 정도이고 홍수나 화산폭발의 경우 수 시간에서 수일 정도이다. 이에 반해 지진해일(쓰나미)의 경우 여유시간이 수십 초에서 수 분 정도이며 지진은 수 초에서 수십 초 밖에 되지 않는다. 그러나 비록 수 초의 짧은 시간이라도 사전에 인식할 수 있다면 많은 인명피해를 극적으로 줄일 수 있을 것이고 원자력 발전소나 대규모 가스시설 등에 긴급조치를 취함으로써 2차 피해의 확산을 최소화 할 수 있다. 사실 우리나라는 일본이나 대만, 중국과 비교하면 상대적으로 지진 안전지대라고 할 수 있다. 하지만 주변국 안전에도 영향을 미친 동일본 대지진을 생각해보면 우리나라에도 하루 빨리 지진조기경보시스템(EEWS; Earthquake Early Warning System)이 구축돼야 한다. 지진조기경보시스템은 지진발생시 피해는 작지만 빠르게 전파하는 P파를 신속하게 탐지ㆍ 분석하여 큰 피해를 입히며 상대적으로 느린 S파가 도달하기 전에 이에 대한 경보를 피해 예상 지역이나 시설물에 가능한 신속히 전달하는 관측 및 분석 그리고 제어기술을 총 망라하는 통합시스템이다[1]-[5]. 국가 지진 관측망을 활용하여 전 국토를 경보대상으로 하는 국가지진조기경보시스템 (NEEWS; National EEWS)은 일본의 UrEDAS(Urgent Earthquake Detection and Alarm System), 미국의 ElarmS(Earthquake Alarm Systems), 대만의 CWBSN (Central Weather Bureau Seismographic network), 우리나라의 한국형 ElarmS(기상청 및 한국지질자원연구원을 주축으로 현재 개발 중) 등이 대표적이다[5]. NEEWS는 전 국토에 그물망 형태의 관측소를 설치하여 각 관측소에서 측정한 지진 데이터를 중앙의 자료분석센터로 전송하고 규모 (earthquake magnitude) 산정과 진원(hypocenter) 및 진앙 (epicenter) 등을 분석・파악하여 최종 결과를 관련기관, 언론사 등에 전달하여 전 국토 및 국민에 지진경보를 발령한 다. NEEWS는 지진발생 시 그 피해가 국가의 존립을 위협 할 만큼 크며 일부 지역에 국한하지 않고 광범위하게 나타나게 되므로 국가 차원에서 반드시 확보해야하는 기술이다. 그러나 국가 기간시설인 지진 관측망을 기반으로 하는 NEEWS는 전 국토가 경보대상이므로 신속한 대처가 필요한 각 생활지역 및 산업지역에 적용하기 위해서는 많은 사회적 비용이 필요하고 기술적 제한으로 실시간 적용에 어려움이 있다. 특히, 동일본 지진과 같이 도심근처에서 발생하는 직하지진의 경우는 지진대비가 거의 불가능하므로 사람이 밀집한 대단위 아파트 단지, 공장 등 피해가 예상되는 생활지역을 경보대상으로 하여 대상지역의 건물이나 시설물에 직접 설치ㆍ운영할 수 있는 순수 방재목적의 지역지진재해 방지시스템 개발이 병행되어야 한다[6]. 이러한 문제점을 해결하기 위해 NEEWS의 관측망 밀집도를 높이며 동시에 직하지진에 대한 대응을 보완을 위해 미국 Caltech의 CSN(Community Seismic Network), 대만 Sanlien의 Seismic Switch, Palert, 일본 Cygnet사의 直下くん(직하지 진 검출기) 등의 네트워크 지진검출시스템 개발이 활발히 진행되고 있다. 네트워크 지진검출시스템은 고성능 지진관 측용 센서를 저비용의 MEMS(micro electro mechanical systems) 센서로 대체하고 관측용 장비보다 상대적으로 저렴한 임베디드 시스템 형태이므로 NEEWS에 비해 구축비용을 줄일 수 있다.

현재 국내의 경우, 지진조기경보시스템 개발의 초기화 단계이며, 최근 생활지역의 지진재해경감을 위해 저비용의 보급형 MEMS 가속도 센서를 활용한 지진 데이터 취득 시스템의 설계 및 구현방법이 발표되었다[6]. 그러나 MEMS 가 속도 센서는 그 응답특성이 피해가 예상되는 중규모(규모 4.0)이상의 지진파 측정에 적합하며 시스템 비용을 현저히 줄일 수 있지만 고가의 지진관측 전용 센서에 비해 센서가 갖는 고유한 특성에 의해 부가잡음(additive noise) 수준이 높은 단점이 있다. 지진 데이터 수집 시 부가되는 잡음은 센서 설치 시 방위와 지표면에 대한 오정렬(misalignment) 에 의한 오프셋 잡음(offset noise), 열 잡음(thermal noise) 과 같이 주로 센서 자체에서 발생하거나 측정 시 부가되는 랜덤(random) 특성의 측정잡음(measurement noise), 그리고 설치장소의 환경(즉, 인적이 드문 지진 관측소의 경우 바람, 파도, 기압 등에 의한 저주파 잡음, 생활지역의 경우 사람, 차량, 공사장 발파 등으로 인한 잡음)에 의한 코히어런트 (coherent) 특성을 갖는 배경잡음(background noise) 등의 형태로 나타난다. 이러한 부가잡음에 의한 신호대잡음비 (SNR; Signal to Noise Ratio)의 저하는 특히, 단일 관측시 스템에서 S파에 비해 상대적으로 작은 진폭의 P파 검출을 더욱 어렵게 한다. 따라서 정확한 지진요소 분석을 위한 다양한 데이터 가공(후처리)을 위해 먼저 지진 데이터를 센싱 (sensing)하는 초기 단계에서 다양한 부가잡음의 제거 노력이 선행되어야 한다.

본 논문에서는 다수 개의 MEMS 센서를 이용하는 보급형 지역지진방재시스템(LEDPS; Local Earthquake Disaster Preventing System)에서 지진 데이터 수집 시 부가되는 다양한 잡음신호의 제거방법을 제안한다. 또한 제안한 방법의 신호대잡음비 개선 이득을 이론적으로 유도하였다. 제안하는 방법에서 잡음제거 과정은 3단계로 이루어진다. 첫 번째 단계에서는 각각의 센서 출력에서 센서 오정렬에 의한 오프 셋 잡음을 제거한다. 두 번째 단계에서는 다수 개의 센서 출력으로 구성되는 데이터 취득 시스템(SDAS; seismic data acquisition System)의 미소배열(micro array) 데이터 중합(stacking)을 통해 랜덤 특성의 측정잡음을 제거한다. 마지막으로 세 번째 단계에서는 측정잡음이 제거된 다수 개 의 SDAS 출력으로 구성되는 위치배열 데이터를 주 시스템에서 추가로 중합(stacking)함으로써 나머지 코히어런트 특성의 배경잡음이 제거된다. 제안한 방법의 성능평가를 위해 실제 상황을 고려한 잡음원과 발생한 지진파를 가진기의 입력으로 사용하여 설계한 지진 데이터 획득 시스템을 이용하여 취득한 신호를 이용하여 컴퓨터 시뮬레이션을 수행하였다. 컴퓨터 시뮬레이션을 통해 제안한 방법의 우수한 잡음 제거 성능과 이론적으로 유도한 신호대잡음비 개선이득이 유효함을 검증하였다.

 

2. 혼합 테스트

최근 BIST를 구현하는데 있어 고려해야 할 점은 효율성, 스피드, 경제성 등이다[6].

그림 1배열 중합을 사용하는 LEDPS의 시스템 구성 Fig. 1 System configuration of designed LEDPS using Array Stacking

그림 2미소배열 센서를 사용하는 지진 데이터 취득 시스템 블록도 Fig. 2 System block diagram of designed Seismic Data Acquisition System with Micro-Array Sensors

그림 1은 제안하는 배열 중합을 사용하는 지역지진재해방 지시스템(LEDPS; Local Earthquake Disaster Preventing System)의 구성을 보이고 있다. 하나의 주 시스템(main system)과 다수 개의 지진 데이터 취득시스템(SDAS; seismic data acquisition system)으로 구성된다. 각각의 SDAS에는 다수 개의 미소배열 센서(MAS; Micro-Array Sensors)가 사용되며 상세 시스템 블록도는 그림 2와 같다. LEDPS의 주 시스템(main system)과 지진 데이터 취득시스 템(SDAS)은 FPGA 및 ARM 프로세서를 기반으로 설계된다. SDAS에는 14bit 디지털 출력을 갖는 MEMS형 3축 주 가속도 센서 8개로 구성된 미소배열 모듈이 위치한다. 주 시스템과 SDAS의 내부 데이터 수집 모듈과 제어/연산 모듈 (module), 그리고 외부 장치와의 통신모듈로 구성되어 있다. 또한 SDAS는 정확한 시간동기를 위해 GPS 수신 모듈이 포함된다.

최근 많이 사용하는 수정 메르칼리(modified Mercalli) 진도등급[7]을 보면 최대등급인 진도 Ⅹ~진도 Ⅻ의 평균최대 가속도가 0.6G (588gal,1G=980cm/s=980gal)이상이며 각각의 진도등급 구분을 위해 필요한 해상도는 0.01G (9.8gal)이다. SDAS의 미소배열 모듈에서 지진 데이터 취득을 위해 사용 한 MEMS형 3축 가속도 센서는 Freescale사의 MMA8451Q 이며 14bit 디지털 출력을 갖는다. MMA8451Q는 내부의 레지스터의 값 설정에 따라 최대 800Hz까지의 ODR(Output Data Rate, 여기서 ODR은 전체 시스템의 가속도 데이터 취득 샘플링으로 볼 수 있다)이 가능하며 ±2G , ±3G , ±4G의 측정범위를 선택할 수 있다. ±2G 측정범위를 선택하였을 때 14비트 MEMS형 가속도 센서가 갖는 해상도는 다음과 같다[6].

식 (1)의 해상도는 수정 메르칼리 진도등급에서 각각의 등급 구분뿐만 아니라 해당 등급을 소수점 첫째자리까지 세분화하기에 충분하다. 따라서 기존 지진 연구ㆍ관측용 가속도 센서를 대체할 목적으로 선정한 MMA8451Q는 제안한 방재목적시스템 개발에 적용 가능하다[6].

그림 3은 미소배열 센서(MSA)와 FPGA내에 Verilog HDL로 설계한 I2C 통신프로토콜을 사용하는 데이터 수집모듈 및 중첩처리 모듈을 보이고 있다.

그림 3FPGA내 설계된 미소배열 센서 데이터 취득 모듈 Fig. 3 Micro-Array Sensors Data Acquisition Module Designed in FPGA

가속도 센서에서 측정된 가속도 신호는 설정된 값에 따라 센서 내부의 ADC(analog to digital conveter)에 의해 14bit 디지털신호로 변환되어 내부 레지스터에 저장된다. 주 가속도 데이터 취득 모듈에서는 샘플링 주파수(100Hz)에 동기되어 있는 Fsync 신호가 감지될 때 마다 주 가속도 센서의 내부 레지스터에 저장된 가속도 데이터를 I2C 프로토콜을 사용하여 직렬로 취득한다. 이후 14bit 크기의 X(EW), Y(NS), Z(UD)축 데이터로 정렬하여 오프셋 제거 후 중첩처리 모듈(Stacking Module)에 전송한다. 설계에 사용된 I2C 통신속도는 표준모드(100kbit/s)이다.

 

3. 미소-위치 배열 중합(Micro-Site Array stacking)을 이용한 잡음제거

지진파 측정 시스템에 의해 수집된 측정신호 x(n)은 지진파(seismic wave) s(n)과 잡음신호 v(n)으로 구성되며 다음과 같이 쓸 수 있다.

지진파 s(n)는 특정 시간구간에서 폭발(explosion)이나 전단파단(shear rupture)과 같은 지진원(seismic source)으로부터 방사되어 지구 내부의 복잡한 전파과정을 거쳐 측정 시스템에 의해 수집되는 신호로서 밀리 초에서 수 초의 유한 주기를 갖는 정현파들로 구성되는 협대역(narrow band) 조화 신호(harmonic signal)이다. 반면 잡음신호 v(n)은 지진파와 달리 연속적인 원인과 특정 시간구간의 원인이 동시에 나타나게 된다. 먼저 연속적인 원인에 의한 잡음은 설치된 센서의 기울기에 의해 발생하는 DC형태의 오프셋(offset) 잡음과 기압, 바람, 파도 등과 같은 자연현상에 의해 발생하는 약 0.1 Hz ~ 0.5 Hz 범위의 저주파 잡음, 그리고 측정 시스템의 특성에 의해 부가되는 광대역의 백색잡음이 있다. 이와 달리 특정시간에 나타나는 잡음으로는 공사장, 차량, 철도, 중기계를 다루는 산업 현장 등 사람에 의한 인위적인 원인에 의한 0.5 Hz ~ 수십 Hz 범위의 고주파 잡음이 있다 [8]. 지진파 신호 s(n)와 이들 잡음 v(n)은 주파수 영역에서 서로 겹치므로 단순한 필터링 과정으로는 제거가 어렵다.

식 (2)의 잡음신호 v(n)을 세분화하여 다음과 같이 쓸 수 있다.

여기서 z(n)은 오프셋 잡음, c(n)은 자연현상과 사람에 의 해 발생하는 배경잡음(background noise)이며 w(n)은 계측 시 부가되는 측정잡음으로 통계적으로 랜덤(random)한 백색 잡음(white noise)이다.

지진파에 포함되어 있는 잡음문제를 해결하기 위해 일반 적으로 지진학에서는 각 관측소들로부터 전송되는 데이터의 배열 처리(array processing)를 사용한다. 이때 수 ~ 수십 km 거리에 설치된 다수의 관측소에서 측정된 지진파의 주파수별 전파속도에 따른 시간차를 보정하는 빔포밍 (beamforming)이 필요하다. 전체 배열의 빔(beam)은 다음과 같이 정의된다[8].

여기서 xj(n)는 시간 n에서 관측소 j로부터 측정된 지진파 데이터이며, Tj는 관측지점간 거리에 따른 지진파의 전파 지연 시간, 그리고 N은 관측소 수이다.

이러한 많은 량의 배열 데이터를 사용한 빔포밍 기반의 잡음제거 방법은 많은 계산량과 복잡한 처리과정을 요구하므로 고성능의 분석 시스템이 요구되며 실시간 처리에 어려움이 있다. 따라서 생활지역의 지진재해방지 목적의 보급형 단일 시스템을 위한 잡음제거 방법이 필요하다.

이를 위해 제안한 방법에서는 그림 3의 N개의 MEMS 센서로 구성된 미소배열의 센서모듈로부터 N개의 서로 다른 센서출력을 구하고 그림 4와 같이 3단계의 처리과정을 하게 된다.

그림 4잡음제거를 위한 3단계 처리과정 Fig. 4 3-stages processing for reducing noise

식 (3)으로부터 미소배열 센서모듈의 j번째 MEMS 센서의 출력 신호 xj(n)를 다음과 같이 다시 쓸 수 있다.

해석의 간단함을 위해 다음과 같은 가정을 한다.

가정 1: 모든 신호 zj(n), cj(n), wj(n), 그리고 sj(n)는 통계적으로 서로 독립이다[9].

가정 2: 오프셋 잡음 zj(n)은 평균이 mz 이며 분산 (variance)이 0(zero)인 DC성분 잡음이며, 배경잡음 cj(n)은 평균이 0(zero)이고 분산이 인 정규 진폭 분포(normal amplitude distribution)를 갖는 유색 프로세서(colored process)이다. 그리고 측정잡음 wj(n)은 통계적으로 WSS(wide sense stationary) 및 iid(independent identically distribution) 특성을 갖는 평균이 0(zero)이고 분산이 인 랜덤 에르고딕 프로세서(random ergodic process)이다[8][9].

첫 번째 잡음제거 단계인 오프셋 제거(Offset Elimination)에서는 센서의 오정렬에 의해 발생할 수 있는 오프셋 잡음 zj(n)을 제거한다. 가정 1과 가정 2로부터 충분히 큰 L길이의 시구간에 대해 cj(n), zj(n), 그리고 wj(n)의 기댓값(expectation) E{cj(n)}, E{zj(n)}, 그리고 E{wj(n)}는 다음과 같이 쓸 수 있다.

식 (5)에서 지진파 sj(n)은 특정 시간 구간에서만 나타난다. 따라서 sj(n)가 존재하지 않은 구간에서 식 (6)로부터 첫 번째 잡음제거 단계의 출력 (n)는 다음과 같다.

두 번째 잡음제거 단계인 미소 중합(Micro Stacking)에서 는 측정 시 부가되는 백색잡음 wj(n)을 제거한다. N 개의 MEMS 센서를 이용한 미소배열에서 N 개의 서로 다른 센서간 거리는 매우 작기 때문에 식 (4)의 시간지연 는 무시할 수 있다. 시간지연 없이 수집된 측정신호들은 직접 중합 (straight stack) 또는 평균 중합(mean stack)으로 불리는 중 합법을 적용하여 등시선(isochrone)상에 위치한 센서들로부터 측정된 데이터의 진폭를 모두 합한 후 센서 수로 나눈다.

식 (9)에 대해 미소 중합 과정을 적용하면 가정 1에 의해 다음과 같이 쓸 수 있다.

여기서 N 은 미소배열 모듈의 MEMS 센서의 수이다

미소 중합의 잡음제거 효과를 평가하기 위해 다음과 같은 가정을 추가한다.

가정 3: 지진파 sj(n)는 서로 다른 센서의 출력에서 코히어런트(coherent)하며 감쇄하지 않지만 배경잡음 cj(n)은 sj(n)에 비해 코히어런트 정도가 작으며 감쇄한다. 그리고 sj(n), cj(n), 그리고 wj(n)은 모든 N개의 센서에 대해 각각 같은 분산 , , 그리고 을 갖는다[8][9].

가정 2와 가정 3에 의해 센서의 출력에서 코히어런트가 큰 지진파 성분은 s1(n)≈s2(n)≈ ⋯ ≈sj(n)이므로 sstage2(n)= ≈s(n)은 유효하다. 반면 N이 충분히 클 때, 코히어런트가 작은 배경잡음은 c1(n)≠c2(n) ≠ ⋯ ≠cj(n) 이므로 cstage2(n)=≠0 , 랜덤특성의 측정잡음은 ≈0로 볼 수 있다. 따라서 식 (10)은 다음과 같이 쓸 수 있다.

마지막 잡음제거 단계인 위치 중합(Site Stacking)에서는 다양한 잡음원으로부터 발생하는 코히어런트 잡음을 감소 (decrease)시킨다. 그림 5는 위치 중합을 이용한 3번째 잡음 제거 처리과정을 나타내고 있다.

위치 중합 과정은 서로 다른 위치에 설치된 M개의 지진 데이터 측정시스템(SDAS; seismic data acquisition system)의 출력을 직접 중합(straight stack) 처리한다. 이때 SDAS가 설치된 거리 차에 의한 지진파의 도달시간 지연발 생을 여부를 고려할 필요가 있다. 검출 대상인 지진 P파의 전파속도는 약 8km/sec이며 지진파 계측 시 사용하는 샘플 링 주파수는 fs = 100Hz이다. 따라서 측정 데이터 샘플간 거리는 약 80m이므로 SDAS 설치 시 SDAS간 최대 거리가 80m이내일 경우 지진파 검출 시 위치에 따른 지연이 발생 하지 않는다.

그림 5위치 중합을 이용한 3번째 잡음제거 처리과정 Fig. 5 3rd denoising stage using site stacking

위치 중합을 이용한 잡음제거를 위해 식 (11)의 미소 중 합 결과를 k번째 SDAS의 미소 중합의 출력 으로 다시 정의하면 식 (11)은 다음과 같이 표현할 수 있다.

미소 중합의 출력을 이용하여 위치 중합을 적용한 결과는 다음과 같이 쓸 수 있다.

미소 중합에서와 유사하게 가정 2와 가정 3을 사용하여 식 (13)은 다음과 같이 다시 쓸 수 있다.

가정 3으로부터 식 (14)에서 미소-위치 중합 후 지진파의 기댓값(expectation)은 E{sstage3(n)}=이므로 미소-위치 중합 후 지진파 에너지는 E{Pseismic}=≈ 이며 배경잡음의 기댓값은 E{cstage3(n)}=이므로 배경잡음의 에너지는 E{Pnoise}=≈ 이다. 이것은 미소-위치 중합 후 잡음의 표준편차 (standard deviation)가 가 됨을 의미한다.

신호대잡음비(SNR)는 잡음 에너지와 지진파 에너지의 비로 다음과 같이 정의된다.

식 (15)에서 우측 변 분자 항은 지진이 발생하지 않은 잡 음구간에서 E{Pseismic}=0이며 지진이 발생한 구간에서는 E{Pseismic}= 이다. 우측 변 분모 항은 지진 발생 유무와 상관없이 항상 E{Pnoise}= 이다. 식 (14)의 결과로부터 제 안한 방법에 의한 지진파 에너지의 감쇄는 무시할 수 있으 므로 Offset 제거 후 N개 센서를 사용한 미소 중합과 M개 SDAS로부터 취득된 데이터의 위치 중합 후 신호대잡음비 (SNR)의 개선정도, 즉 배열 이득 G는 잡음제거 전과 후의 잡음 에너지비로 구할 수 있다. 식 (5)의 오프셋 잡음이 z(n)=0 이라 가정하면 잡음제거 전 측정신호 x(n)에 부가된 잡음 에너지는 배경 잡음 에너지와 측정 잡음 에너지의 합으로 E{Pnoise}=+ 이다. 반면 제안한 방법에 의해 억제 된 잡음 에너지는 식 (14)의 결과로부터 E{Pnoise}proposed= 이다. 따라서 N개 센서를 사용한 미소-위치 중합과 M개의 SDAS 데이터의 위치 중합처리에 의한 SNR 의 이론적 개선정도 G는 다음과 같다.

식 (16)은 센서 수 N이 충분히 큰 경우 랜덤특성의 측정 잡음 ≈0 을 가정하여 얻은 결과이며, 일반적으로 구현 상황을 고려할 경우 N 은 충분히 크지 않으므로 <

 

4. 컴퓨터 시뮬레이션

제안한 미소-위치 배열 중합을 이용한 지진파 잡음제거 성능을 평가하기 위해 그림 1과 같이 고층 건물의 상층, 중층, 지하에 SDAS를 설치하고 측정된 지진 데이터를 주 시스템으로 전송하는 시나리오(scenario)를 고려하여 컴퓨터 모의실험을 수행하였다. 실험에 사용한 지진파 신호 및 잡 음신호는 실제 지진신호와 동일한 진동을 만들어주는 San-Esu사의 SSV-125L을 사용하여 설계ㆍ제작한 SDAS로 취득한 신호와 이로부터 모델링한 신호이다. 가진기를 사용 하여 SDAS로 취득한 데이터를 지하에 설취된 SDAS로 부터 취득한 가속도 데이터로 가정하고 나머지 중층과 상층의 SDAS로부터 취득한 데이터를 모델링하였다. 또한 오프셋 잡음을 위해 취득한 신호에 임의의 DC값을 추가하였다. 건물의 구조 및 재질에 의한 층별 측정 데이터의 영향은 고려 하지 않았다. 모든 취득신호의 샘플링 주파수(sampling frequency)는 fs=100Hz이며 모델링에 사용한 방법은 표 1과 같다.

표 1시뮬레이션에 사용한 지진파 및 부가잡음 Table 1 Seismic signal and additive noises used in simulation

그림 6은 표 1의 지하 설치를 가정하고 SDAS으로 측정 된 측정잡음(a), 배경잡음(b) 그리고 실제 지진파 신호(c)를 나타내고 있다. SDAS를 사용하여 100sec(10,000샘플)간 측 정하였으며, 그림 6(a)의 수집된 측정잡음은 오프셋 잡음을 포함하고 있으므로 평균이 mw ≈0.05이며 분산이 σw ≈3.12 로 확인되었다. 그림 6(b)의 배경잡음은 실제 지진 관측망에서 측정된 지진 데이터의 배경잡음 구간을 가진기의 입력으 로 사용하여 SDAS로 취득한 신호이다. 배경잡음의 평균은 mc ≈0이고 분산 σc ≈0.42이다. 측정한 배경잡음의 주기는 약 0.5sec이다.

그림 7은 제안한 방법의 잡음제거 성능을 보이고 있다. 그림 7(a)는 지하에 설치된 SDAS의 미소배열 센서 중 센서 하나의 출력으로 지진파가 검출되기 전인 5000샘플(50sec) 이전에서 평균이 mw ≈0.05이며 분산이 σw ≈3.12이다. 그림 7(b)는 그림 7(a)의 센서 데이터를 사용하여 1 단계 잡음제거 과정을 통해 오프셋 잡음을 제거한 결과이다. 그림 7(c) 는 지하에 설치된 SDAS에서 8개의 MEMS 센서로 구성된 미소 배열 데이터를 사용하여 미소 중합한 결과이다. 미소 중합 결과로 부가잡음이 상당히 제거되었음을 확인할 수 있다. 마지막 그림 7(d)는 위치 중합의 결과이다. 미소 중합에 사용한 데이터는 지하 설치를 가정하고 실제 측정한 SDAS의 출력 데이터를 활용하여 표 1에서 설명한 방법으로 중층, 상층의 SDAS 데이터를 모델링하였다. 이때 각 미소배열 센서 데이터는 동일한 파라미터로 모델링되었으며, 사용한 파라미터는 오프셋 잡음을 위해 −0.4≤DCoffset≤0.4 내의 임의 값을 사용하였고, 측정잡음을 위해 Am=0.5, Bm=0.25, αw=30, β=60, 그리고 분산은 지하의 경우와 유사하게 σw ≈3.17이다. 미소 중합에 의한 잡음제거 결과인 그림 7(c) 에 비해 그림 7(d)에서 잡음만 존재하는 50sec 이전 구간의 부가잡음은 현저히 감소하였으며 지진파와 잡음이 동시에 존재하는 50sec 이후 구간에서는 지진파 진폭감소나 위상변화 없이 효과적으로 잡음만 제거되었음을 알 수 있다.

그림 6지하 층의 SDAS에 의해 측정된 부가잡음들과 실 지진파 신호 Fig. 6 Additive noises and real seismic wave those measured by SDAS on the underground layer

그림 7제안한 미소-위치 중합 방법의 이용한 잡음제거 성능 Fig. 7 Noise reduction performance of the proposed micro-site stacking method

그림 8은 제안한 방법의 신호대잡음비 성능을 평가한 결과이다. 그림 8(a)는 단일 MEMS 센서로 취득한 데이터의 신호대잡음비(SNR)를 나타내고 있으며 그림 8(b)는 제안한 방법에 의해 잡음이 제거된 데이터의 SNR이다. 그림 8(c)는 제안한 방법의 SNR 개선 이득을 구하기 위해 식 (15)를 사 용하였으며 지진파 에너지 및 잡음 에너지는 E{Pseismic}=, E{Pnoise}= 와 같이 계산 하였다. 기댓값을 구하기 위해 200개의 서로 다른 부가잡음 데이터에 대해 몬테카를로 시뮬레이션을 수행하였으며 실험에서 L=50을 사용하였다.

식 (16)을 사용하여 그림 8(a)와 그림 8(b)의 SNR 계산에 서 사용한 지진파 데이터 s(n)는 그림 6(c)이며, 부가잡음 v(n)그림 8(a)에서는 그림 7(a)의 측정 데이터에서 그림 6(c)의 지진파 데이터를 제거하여 사용하였고 그림 8(b)에서는 그림 7(d)의 중합에 의해 잡음제거된 데이터에서 그림 6(c)의 지진파 데이터를 제거하여 사용하였다.

그림 8의 결과로부터 단일 센서의 취득 데이터에 비해 제 안한 방법으로 잡음제거된 결과데이터의 SNR 성능이 우수하 며 그림 8(c)로부터 SNR 개선이득의 평균은 ≈16 임을 알 수 있다. 이는 식 (15)의 이론적으로 유도한 개선이득 =NM(N-S, M-S)=24 에 비해 작지만 그림 8(c)에서 시뮬레이션으로 구한 개선이득의 최대값이 약 24임을 통해 식 (17)의 결과가 타당함을 유추할 수 있다.

그림 8제안한 방법의 신호대잡음비(SNR) 개선 Fig. 8 Signal-to-noise ratio(SNR) Improvement of the proposed method

그림 9와 그림 10은 각각 기존 방법과 제안한 방법의 지진 P파 검출 성능을 나타내고 있다. 지진 P파 검출을 위해 사용한 트리거링 알고리즘(triggering algorithm)은 널리 사용되고 있는 STA/LTA 알고리즘이다. 검출 알고리즘에서 사용한 파라미터는 STA의 길이는 1초(100 샘플), LTA의 길이는 20초(2000 샘플)이며 검출을 위한 임계값(threshold value)은 2를 사용하였다. 그림 9는 단일 MEMS 센서로 취 득된 신호와 그에 대한 P파 검출 결과이며 그림 10은 그림 9(a)의 취득 신호가 제안한 방법에 의해 잡음이 제거된 신호와 잡음 제거된 신호를 입력으로 한 P파 검출 결과이다. 그림 9와 그림 10의 결과로부터 제안한 방법의 SNR 개선효과로 지진 P파 검출 시각이 정확히 이루어짐을 알 수 있다.

그림 9기존 방법의 지진 P파 검출 성능 Fig. 9 Seismic P-Wave Detection Performance of Conventional Method

그림 10제안한 방법의 지진 P파 검출 성능 Fig. 10 Seismic P-Wave Detection Performance of The Proposed Method

 

5. 결 론

본 논문은 보급형 지역지진방재시스템(LEDPS; Local Earthquake Disaster Preventing System) 개발을 위해 다수 개의 저비용 MEMS 센서를 이용하여 지진 데이터 수집 시 부가되는 다양한 잡음신호를 배열 중합에 의해 제거함으로써 SNR을 향상시킬 수 있는 방법을 제안하였다. 순차적으로 진행되는 잡음제거 각 단계에서는 다양한 형태의 잡음을 효과적으로 제거할 수 있다. 또한 많은 수의 센서와 데이터 취득 시스템을 사용한다면 SNR 성능을 보다 향상시킬 수 있지만 보급형 시스템임을 고려하여 적정 수의 센서와 데이터 취득 시스템을 선택할 수 있도록 이론적으로 SNR 개선 이득을 유도하고 시뮬레이션을 통해 유효성을 검증하였다.

References

  1. J. Aschau and A. N. Kuppers, Early Warning Systems for Natural Disaster Reduction, Springer, 2003.
  2. Y. M. Wu and H. Kanamori, "Development of an earthquake early warning system using real-time strong motion signals," Sensors, vol. 8, pp. 1-9, 2008. https://doi.org/10.1109/JSEN.2008.2010121
  3. R. M. Allen and H. Kanamori, "The potential for earthquake early warning in southern California," Science, vol. 300, pp. 786-789, May 2003. https://doi.org/10.1126/science.1080912
  4. R. M. Allen, P. Gasparini, O. Kamigaichi and M. Bose, "The status of earthquake early warning around the world : an introductory overview," Seismological Research Letters, vol. 80, pp. 682-693, Sep. 2009. https://doi.org/10.1785/gssrl.80.5.682
  5. H. C. Chi et al., Designing of the National Earthquake Early Warning System and Expanding of Realtome Data Sharing, Research report, KIGAM, 2010.
  6. H. Choi and H. D. Bae, "Design and Implementation of Seismic Data Acquisition System using MEMS Accelerometer," Jour. of KIEE, vol. 61. no. 6, pp. 851-858, 2012. https://doi.org/10.5370/KIEE.2012.61.6.851
  7. S. G. Kim, The Theory of Seismology, Jigu Pub. Co., 2008.
  8. P. Bormann, New manual of seismological observatory practice(2002), revised version, electronically published 2009, GeoForschungsZentrum Potsdam, 2009.
  9. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd Ed. Prentice-Hall, 1999.

Cited by

  1. Network Configuration, Time Management, and Data Storage for Urban Earthquake Disaster Preventing System vol.63, pp.12, 2014, https://doi.org/10.5370/KIEE.2014.63.12.1675