DOI QR코드

DOI QR Code

A Study on Catalytic Activity of Oxygen Reduction Reaction and Performance of PEMFC using Pt/C Synthesized by Modified Polyol

수정된 폴리올법으로 합성된 Pt/C를 이용한 산소환원반응성 및 고분자전해질 연료전지 성능 연구

  • Yang, Jongwon (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Chu, Cheonho (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate School of Energy and Environment, Seoul National University of Science and Technology)
  • 양종원 (서울과학기술대학교 에너지환경대학원) ;
  • 추천호 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Received : 2014.07.31
  • Accepted : 2014.09.10
  • Published : 2014.09.30

Abstract

In this research, we investigate electrical performance and electrochemical properties of carbon supported Pt (Pt/C) that is synthesized by polyol method. With the Polyol_Pt/C that is adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with commercial Pt/C(Johnson Mattey) catalyst. Their electrochemically active surface (EAS) area are measured by cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and (ii) PEMFC single cell tests are used. The CV measurement demonstrate EAS of Polyol_Pt/C is compared with commercial JM_Pt/C. In case of Polyol_Pt/C, its half-wave potential, kinetic current density are excellent. Based on data obtained by half-cell test, when PEMFC single cell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing Polyol_Pt/C are better than those employing commercial Pt/C. Conclusively, Polyol_Pt/C synthesized by modified polyol process shows better ORR catalytic activity and PEMFC performance than other catalysts.

해당 연구에서는 수정된 폴리올법을 이용하여 합성한 카본블랙 탄소지지체의 Pt촉매의 전기적, 전기화학적 특성을 평가하였다. 또한 Polyol_Pt/C 촉매는 고분자전해질연료전지의 공기극에 적용하여 산소환원반응성을 측정하였다. 산소환원반응성과 고분자전해질연료전지 성능평가를 통해 상용 Pt/C (JM_Pt/C)촉매와 비교하여 전기화학적인 촉매성능을 비교하였다. 촉매의 활성표면적을 구하기 위해 순환전압전류주사법을 이용하였고, 산소환원반응성을 측정하기 위해 회전원판전극으로 선형주사전류법을 이용하였다. 또한 고분자전해질연료전지 완전지 성능 측정을 진행하였다. 그 결과 Polyol_Pt/C 촉매의 활성표면적 ($196m^2g^{-1}$)은 JM_Pt/C 촉매의 그 값 ($183m^2g^{-1}$) 보다 우수하였다. 촉매들의 산소환원반응성에 경우에도 Polyol_Pt/C 촉매는 JM_Pt/C 촉매보다 우수한 반파장전위 및 한계전류밀도를 나타내었다. 또한 완전지 평가시, MEA 공기극을 위한 Polyol_Pt/C 촉매 담지량을 기존의 0.4에서 0.15로 줄였을 때, 성능저하가 적게 나타났고, 300시간의 장기간 성능 평가에서도 연료전지 성능이 거의 일정하게 유지되었다. 이를 토대로 수정된 폴리올법에 의해 합성된 Polyol_Pt/C 촉매는 경제적인 이용 및 우수한 내구성을 가지고 있음을 밝혀내었다.

Keywords

References

  1. T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, "Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co", Journal of The Electrochemical Society, 1999, 146, 3750-3756. https://doi.org/10.1149/1.1392544
  2. T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, K.-S. Lee, S. H. Kang, and Y.-E. Sung, "Influence of Oxide on the Oxygen Reduction Reaction of Carbon-Supported Pt-Ni Alloy Nanoparticles", The Journal of Physical Chemistry C, 2009, 113, 19732-19739. https://doi.org/10.1021/jp9076273
  3. S. Yoo, S. Hwang, and S.-K. Lim, "Current status of electrocatalyst for PEMFC", News & Information for Chemical Engineers, 2012, 30, 422
  4. T.-Y. Jeon, N. Pinna, S. J. Yoo, S-H. Yu, S-K. Kim, S. Lim, D. Peck, D.-H. Jung and Y.-E. Sung, "Enhanced Activity of Pt-Based Electrocatalysts for Oxygen Reduction via a Selective Pt Deposition Process", Journal of Electroanalytical Chemistry, 2011, 662, 70-79. https://doi.org/10.1016/j.jelechem.2011.03.023
  5. K. Hyun, J.H. Lee, C.W. Yoon and Y. Kwon, "The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells", International Journal of Electrochemical Science, 2013, 8, 11752-11767.
  6. Y.-H. Cho, T.-Y. Jeon, J. W. Lim, Y.-H. Cho, M. Ahnb, N. Jung, S. J. Yoo, W.-S. Yoon, and Y.-E. Sung, "Performance and Stability Characteristics of MEAs with Carbon-Supported Pt and Pt1Ni1 Nanoparticles as Cathode Catalysts in PEMFuel Cell", International Journal of Hydrogen Energy, 2011, 36, 4394-4399. https://doi.org/10.1016/j.ijhydene.2010.12.084
  7. S. J. Yoo, S.-K.Kim, T.-Y. Jeon, S. J. Hwang, J.-G. Lee, S.-C. Lee, K.-S. Lee, Y.-H. Cho, Y.-E. Sung, and T.-H. Kim, "Enhanced Stability and Activity of Pt-Y Alloy Catalysts for Electrocatalytic Oxygen Reduction", Chemical Communications, 2011, 47, 11414-11416. https://doi.org/10.1039/c1cc12448j
  8. K. Hyun, J.H. Lee, C.W. Yoon, Y.-H. Cho, L.-H. Kim and Y. Kwon, "Development of oxygen reduction catalyst consisting of carbon nanotube, polypyrrole and PtNi alloy for the use in proton exchange membrane fuel cells", Synthetic Metals, 2014, 190, 48-55. https://doi.org/10.1016/j.synthmet.2014.02.003
  9. R. I. Jafri, N. Rajalakshmi, S. Ramaprabbu, "Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell", Journal of Materials Chemistry, 2010, 20, 7114-7117. https://doi.org/10.1039/c0jm00467g
  10. H.-S. Oh, J.-G. Oh, and H. Kim, "Modification of Polyol Process for Synthesis of Highly Platinum Loaded Platinum-Carbon Catalysts for Fuel Cells", Journal of Power Sources, 2008, 183, 600-603. https://doi.org/10.1016/j.jpowsour.2008.05.070
  11. Y.-H. Cho, B. Choi, Y.-H. Cho, H.-S. Park, and Y.-E. Sung, "Pd-Based PdPt(19:1)/G Electrocatalyst as an Electrode in PEM Fuel Cell", Electrochemistry Communications, 2007, 9, 378-381. https://doi.org/10.1016/j.elecom.2006.10.007
  12. Y.-H. Cho, H.-S. Park, Y.-H. Cho, D.-S. Jung, H.-Y. Park, and Y.-E. Sung, "Effect of Platinum Amount in Carbon Supported Platinum Catalyst on Performance of Polymer Electrolyte Membrane Fuel Cell", Journal of Power Sources, 2007, 172, 89-93. https://doi.org/10.1016/j.jpowsour.2007.01.067
  13. R. L. Borup, R. Mukundan, "PEM Fuel Cell Degradation", The Electrochemical Society, 2010, 33(1), 17-26.