References
- B. Liu, W. Hsu, S. Chen, and Y. Ma. Analyzing the subjective interestingness of association rules. IEEE Intelligent Systems, 15(5):47-55, 2000. https://doi.org/10.1109/5254.889106
- R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In KDD, pages 145-154, 1999.
- X.-H. Huynh, F. Guillet, and H. Briand. Arqat: An exploratory analysis tool for interestingness measures. In the 11th international symposium on Applied Stochastic Models and Data Analysis, pages 334-344, 2005.
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for association analysis. Information Systems, 29(4):293-313, 2004. https://doi.org/10.1016/S0306-4379(03)00072-3
- P. Lenca B. Vaillant and S. Lallich. A clustering of interestingness measures. In Proceedings of the 7th International Conference on Discovery Science, pages 290-297, 2004.
- P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261-283, 1989.
- S. Jaroszewicz and D. A. Simovici. A general measure of rule interestingness. In PKDD, pages 253-265, 2001.
- P. Smyth and R. M. Goodman. An information theoretic approach to rule induction from databases. IEEE Transactions on Knowledge and Data Engineering, 4(4):301-316, 1992. https://doi.org/10.1109/69.149926
- S. Jaroszewicz and D. A. Simovici. Interestingness of frequent itemsets sing bayesian networks as background knowledge. KDD, pages 178-186, 2004.
- L. Wong G. Dong, X. Zhang and J. Li. Caep. Caep: Classification by aggregating emerging patterns. In Proceedings of the 2nd International Conference on Discovery Science, pages 30-42, 1999.
- J. Han W. Li and J. Pei. Cmar: Accurate and efficient classification based on multiple class-association rules. ICDM, pages 208-217, 2001. 14
- R. J. Beran. Minimum hellinger distances for parametric models. Ann. Statistics, 5:445-463, 1977. https://doi.org/10.1214/aos/1176343842
- G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules, in: G. piatetsky-shapiro. In Knowledge Discovery in Databases, MIT Press., pages 229-248, 1991.
- A. Frank and A. Asuncion. UCI machine learning repository, 2010.
- U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Int'l Joint Conference on Articial Intelligence, pages 1022-1029, 1993.
- R. and R. Srikant, Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile, September 1994