DOI QR코드

DOI QR Code

Synthesis of Crosslinked Poly(POEM-co-AMPSLi-co-GMA) Electrolytes and Physicochemical Properties

가교결합형 poly(POEM-co-AMPSLi-co-GMA) 전해질의 합성과 물리화학적 특성

  • Choi, Da-In (Department of Engineering Chemistry, Chungbuk National University) ;
  • Ryu, Sang-Woog (Department of Engineering Chemistry, Chungbuk National University)
  • Received : 2014.01.13
  • Accepted : 2014.02.18
  • Published : 2014.02.28

Abstract

In this study, crosslinked poly(POEM-co-AMPSLi-co-GMA)s were prepared by epoxy coupling of GMA after radical copolymerization of AMPS, POEM and GMA followed by acid-base titration reaction between sulfonic acid of AMPS and $Li_2CO_3$. It was observed that the crystalline melting temperature of POEM was effected by mol% of components and shifted to lower value by lithiation of AMPS group. The ionic conductivity of crosslinked polymer electrolyte was decreased by addition of GMA but maintained over $1.0{\times}10^{-6}S\;cm^{-1}$ until 16 mol%. Particularly, the self-doped polymer electrolyte with 2 mol% of GMA showed its ionic conductivity as high as $4.08{\times}10^{-6}S\;cm^{-1}$ at room temperature and electrochemical stability up to 6 V. In addition, 0.11 MPa of modulus and 270% of elongation were obtained from the free standing film of crosslinked polymer electrolyte.

본 실험에서는 다양한 조성의 AMPS, POEM 및 GMA를 함유하는 공중합체를 합성하고, AMPS의 술폰산기와 $Li_2CO_3$와의 산염기 반응 및 에폭시기의 가교반응을 유도하여 가교결합된 poly(POEM-co-AMPSLi-co-GMA) 전해질을 제조하였다. POEM의 결정융점은 AMPS 및 POEM의 몰분율에 따라 변화되는 특징을 관찰할 수 있었으며, 리튬이온이 도입된 이후 대체적으로 감소되는 경향이 나타났다. 가교된 고분자의 이온전도도는 GMA의 함량이 증가할수록 다소 감소되는 결과가 나타났지만, 16 mol%까지는 $1.0{\times}10^{-6}S\;cm^{-1}$ 이상의 값을 보여주었다. 특히, 자기-도핑형 전해질임에도 불구하고 2 mol%에서 최대 $4.08{\times}10^{-6}S\;cm^{-1}$의 높은 상온이온전도도가 얻어졌으며, 상온에서 6 V까지 우수한 전기화학적 안정성을 보여주었다. 또한 가교된 고분자전해질은 필름성형이 가능하며, 0.11 MPa의 탄성계수 및 270%의 변형율을 보여주었다.

Keywords

References

  1. J. MacCallum, and C. Vincent, 'Polymer Electrolyte Reviews-1' 69, Elsevier Applied Science, New York (1987).
  2. G.-A. Nazri, and G. Pistoia, 'Lithium Batteries Science and Technology' 574, Kluwer Academic Publishers, New York (2004).
  3. M. Yosho, R. Brodd, and A. Kozawa, 'Lithium-ion Batteries' 413, Springer, New York (2009).
  4. J. Saunier, F. Alloin, J. Sanchez, and G. Caillon, 'Thin and flexible lithium-ion batteries: investigation of polymer electrolytes' J. Power Sources, 119-121, 454 (2003). https://doi.org/10.1016/S0378-7753(03)00197-6
  5. S. Zhang, L. Yang, and Q. Liu, 'Single-ion conductivity and carrier generation of polyelectrolytes' Solid State Ionics, 76, 121 (1995). https://doi.org/10.1016/0167-2738(94)00224-G
  6. F. Dias, L. Plomp, and J. Veldhuis, 'Trends in polymer electrolytes for secondary lithium batteries' J. Power Sources, 88, 169 (2000). https://doi.org/10.1016/S0378-7753(99)00529-7
  7. M. Watanabe, H. Tokuda, and S. Muto, 'Anionic effect on ion transport properties in network polyether electrolytes' Electrochimica Acta, 46, 1487 (2001). https://doi.org/10.1016/S0013-4686(00)00743-X
  8. L. Sperling, 'Introduction to Physical Polymer Science' 201, Wiley Interscience, New York (2001).
  9. E. Gomez, A. Panday, E. Feng, V. Chen, G. Stone, A. Minor, C. Kisielowski, K. Downing, O. Borodin, G. Smith, and N. Balsara, 'Effect of ion distribution on conductivity of block copolymer electrolytes' Nano Letters, 9, 1212(2009). https://doi.org/10.1021/nl900091n
  10. W. Young, and T. Epps, III, 'Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations' Macromolecules, 45, 4689(2012). https://doi.org/10.1021/ma300362f
  11. A. Nishimoto, M. Watanabe, Y. Ikeda, and S. Kohjiya, 'High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers' Electrochimica Acta, 43, 1177 (1998). https://doi.org/10.1016/S0013-4686(97)10017-2
  12. Y. Ikeda, Y. Wada, Y. Matoba, S. Murakami, and S. Kohjiya, 'Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte' Electrochimica Acta, 45, 1167 (2000). https://doi.org/10.1016/S0013-4686(99)00377-1
  13. P. Jannasch, 'Ion conducting electrolytes based on aggregating comblike poly(propylene oxide)' Polymer, 42, 8629 (2001). https://doi.org/10.1016/S0032-3861(01)00373-1
  14. D. Kim, J. Song, and J. Park, 'Synthesis, characterization and electrical properties of the novel polymer electrolytes based on polyesters containing ethylene oxide moiety' Electrochimica Acta, 40, 1697 (1995). https://doi.org/10.1016/0013-4686(95)00078-S
  15. J. Acosta, and E. Morales, 'Structural, morphological and electrical characterization of polymer electrolytes based on PEO-PPO blends' Solid State Ionics, 85, 85 (1996). https://doi.org/10.1016/0167-2738(96)00045-8
  16. Y. Kato, S. Yokoyama, T. Yabe, H. Ikuta, Y. Uchimoto, and M. Wakihara, 'Ionic conductivity and transport number of lithium ion in polymer electrolytes containing PEG-borate ester' Electrochimica Acta, 50, 281 (2004). https://doi.org/10.1016/j.electacta.2003.12.066
  17. J. Cowie, and G. Spence, 'Novel single ion, combbranched polymer electrolytes' Solid State Ionics, 123, 233 (1999). https://doi.org/10.1016/S0167-2738(99)00080-6
  18. X. Sun, and C. Angell, 'New single ion conductors ("polyBOP" and analogs) for rechargeable lithium batteries' Solid State Ionics, 175, 743 (2004). https://doi.org/10.1016/j.ssi.2003.11.045
  19. H. Allcock, D. Welna, and A. Maher, 'Single ion conductors-polyphosphazenes with sulfonimide functional groups' Solid State Ionics, 177, 741 (2006). https://doi.org/10.1016/j.ssi.2006.01.039
  20. N. Byrne, D. MacFarlane, and M. Forsyth, 'Composition effects on ion transport in a polyelectrolyte gel with the addition of ion dissociators' Electrochimica Acta, 50, 3917 (2005). https://doi.org/10.1016/j.electacta.2005.02.068
  21. X. Sun, J. Hou, and J. Kerr, 'Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate' Electrochimica Acta, 50, 1139 (2005). https://doi.org/10.1016/j.electacta.2004.08.011
  22. D. Sadoway, B. Hyang, P. Trapa, P. Soo, P. Bannerjee, and A. Mayes, 'Self-doped block copolymer electrolytes for solid-state rechargeable lithium batteries' J. Power Sources, 97-98, 621 (2001). https://doi.org/10.1016/S0378-7753(01)00642-5
  23. J. Travas-Sejdic, R. Steiner, J. Desilvestro, and P. Pickering, 'Ionic conductivity of novel polyelectrolyte gels for secondary lithium-ion polymer batteries' Electrochimica Acta, 46, 1461 (2001). https://doi.org/10.1016/S0013-4686(00)00740-4
  24. J. Sun, D. MacFarlane, and M. Forsyth, 'Lithium polyelectrolyte-ionic liquid systems' Solid State Ionics, 147, 333 (2002). https://doi.org/10.1016/S0167-2738(02)00028-0
  25. P. Park, Y. Sun, and D. Kim, 'Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries' Electrochimica Acta, 50, 375 (2004). https://doi.org/10.1016/j.electacta.2004.01.110
  26. S. Ryu, 'Effect of lithium ion concentration on thermal properties in novel single-ion polymer electrolyte' Polymer Journal, 40, 688 (2008). https://doi.org/10.1295/polymj.PJ2008026