DOI QR코드

DOI QR Code

MLS 차분법을 이용한 동적균열전파 해석

Analysis of Dynamic Crack Propagation using MLS Difference Method

  • 윤영철 (명지전문대학 토목과) ;
  • 김경환 (연세대학교 토목환경공학과) ;
  • 이상호 (연세대학교 토목환경공학과)
  • Yoon, Young-Cheol (Department of Civil Engineering, Myongji College) ;
  • Kim, Kyeong-Hwan (Department of Civil Environment Engineering, Yonsei University) ;
  • Lee, Sang-Ho (Department of Civil Environment Engineering, Yonsei University)
  • 투고 : 2013.09.03
  • 심사 : 2013.11.20
  • 발행 : 2014.02.28

초록

본 논문은 MLS(Moving Least Squares) 차분법을 바탕으로 동적균열전파 해석을 수행하기 위한 알고리즘을 제시한다. MLS 차분법은 절점만으로 이루어진 수치모델을 사용하며, 이동최소제곱법을 이용하여 전개한 Taylor 다항식을 기초로 미분근사식을 유도하기 때문에, 요소망의 제약에서 완벽하게 벗어난 절점해석이 가능하다. 시간항을 포함하는 동적 평형방정식은 Newmark 방법으로 시간적분 하였다. 동적하중을 받는 균열이 전파할 때, 매 시간단계마다 절점모델을 재구성하지 않고 균열선단 주변에서 국부적인 수정을 통해 해석이 가능하다. 동적균열을 묘사하기 위해 가시한계법(visibility criterion)을 적용하였고, 동적 에너지해방률을 산정하여 균열의 진전유무와 그에 상응하는 진전방향을 결정하였다. 모드 I 상태와 혼합모드 상태에서 균열이 진전하는 현상을 모사하였고, 이론해와 Element-Free Galerkin법으로 계산한 결과와의 비교를 통해 개발된 알고리즘의 정확성과 안정성을 검증하였다.

This paper presents a dynamic crack propagation algorithm based on the Moving Least Squares(MLS) difference method. The derivative approximation for the MLS difference method is derived by Taylor expansion and moving least squares procedure. The method can analyze dynamic crack problems using only node model, which is completely free from the constraint of grid or mesh structure. The dynamic equilibrium equation is integrated by the Newmark method. When a crack propagates, the MLS difference method does not need the reconstruction of mode model at every time step, instead, partial revision of nodal arrangement near the new crack tip is carried out. A crack is modeled by the visibility criterion and dynamic energy release rate is evaluated to decide the onset of crack growth together with the corresponding growth angle. Mode I and mixed mode crack propagation problems are numerically simulated and the accuracy and stability of the proposed algorithm are successfully verified through the comparison with the analytical solutions and the Element-Free Galerkin method results.

키워드

참고문헌

  1. Belytschko, T., Lu, Y.Y., Gu, L. (1994) Elementfree Galerkin Methods, International Journal for Numerical Methods in Engineering, 37, pp.229-256. https://doi.org/10.1002/nme.1620370205
  2. Belytschko, T., Organ, D., Gerlach, C. (2000) Element-free Galerkin Methods for Dynamic Fracture in Concrete, Computer Methods in Applied Mechanics and Engineering, 187, pp.385-399. https://doi.org/10.1016/S0045-7825(00)80002-X
  3. Belytschko, T., Organ, D., Gerlach, C. (1995) A Coupled Finite Element-Element-Free Galerkin Method, Computational Mechanics, 17, pp.186-195. https://doi.org/10.1007/BF00364080
  4. Belytschko, T., Tabbara M. (1996) Dynamic Fracture using Element-free Galerkin Methods, International Journal for Numerical Methods in Engineering, 39, pp.923-938. https://doi.org/10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
  5. Fernandez-Mendez, S., Huerta, A. (2004) Imposing Essential Boundary Conditions in Mesh-Free Methods, Computer Methods in Applied Mechanics and Engineering, 193, pp.1257-1275. https://doi.org/10.1016/j.cma.2003.12.019
  6. Fleming, M., Moran, B., Belytschko, T. (1997) Enriched Element-Free Galerkin Methods for Crack Tip Fields, International Journal for Numerical Methods in Engineering, 40, pp.1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
  7. Freund, L.B. (1990) Dynamic Fracture Mechanics, Cambridge: Cambridge University Press.
  8. Gosz, J., Liu, W.K. (1996) Admissible Approximations for Essential Boundary Conditions in the Reproducing Kernel Particle Method, Computational Mechanics, 19, pp.120-135. https://doi.org/10.1007/BF02824850
  9. Gu, Y.T., Zhang, L.C. (2008) Coupling of the Meshfree and Finite Element Methods for Determination of the Crack Tip Fields, Enginnering Fracture Mechanics, 75, pp.986-1004. https://doi.org/10.1016/j.engfracmech.2007.05.003
  10. Kalthoff, J.F., Winkler, S. (1987) Failure Mode Transition at High Rates of Shear Loading, International Conference on Impact Loading and Dynamic Behavior of Materials, 1, pp.185-195.
  11. Kim, D.W., Kim, H.K. (2004) Point Collocation Method Based on The FMLSRK Approximation for Electromagnetic Field Analysis, IEEE Transactions on Magnetics, 40(2), pp.1029-1032. https://doi.org/10.1109/TMAG.2004.824612
  12. Kim, D.W., Kim, Y.S. (2003) Point Collocation Methods using The Fast Moving Least-Square Reproducing Kernel Approximation, International Journal for Numerical Methods in Engineering, 56, pp.1445-1464. https://doi.org/10.1002/nme.618
  13. Kim, D.W., Liu, W.K., Yoon, Y.C., Belytschko, T., Lee, S.H. (2007) Meshfree Point Collocation Method with Intrinsic Enrichment for Interface Problems, Computational Mechanics, 40, pp.1037-1052. https://doi.org/10.1007/s00466-007-0162-1
  14. Krongauz, Y., Belytschko, T. (1996) Enforcement of Essential Boundary Conditions in Meshless Approximations using Finite Elements, Computer Methods in Applied Mechanics and Engineering, 131, pp.133-145. https://doi.org/10.1016/0045-7825(95)00954-X
  15. Krysl, P., Belytschko, T. (1999) The Element Free Galerkin Method for Dynamic Propagation of Arbitrary 3-D Cracks, International Journal for Numerical Methods in Engineering, 44, pp.767-800. https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO;2-G
  16. Lee, S.H., Yoon, Y.C. (2004) Meshfree Point Collocation Method for Elasticity and Crack Problems, International Journal for Numerical Methods in Engineering, 61, pp.22-48. https://doi.org/10.1002/nme.1053
  17. Liu, W.K., Jun, S., Zhang, Y. (1995) Reproducing Kernel Particle Methods, Computer Methods in Applied Mechanics and Engineering, 191, pp.1421-1438.
  18. Moran, B., Shih, C.F. (1987) Crack Tip and Associated Domain Integrals From Momentum and Energy Balance, Engineering Fracture Mechanics, 27, pp.615-642. https://doi.org/10.1016/0013-7944(87)90155-X
  19. Newmark, N.M. (1959) A Method of Computation for Structural Dynamics, Journal of the Engineering Mechanics Division, ASCE, 85, pp.67-94.
  20. Rajesh, K.N., Rao, B.N. (2010) Coupled Meshfree and Fractal Finite Element Method for Mixed Mode Two-dimensional Crack Problems, International Journal for Numerical Methods in Engineering, 84, pp.572-609.
  21. Yau, J.F., Wang, S.S., Corten, H.T. (1980) A Mixed-mode Crack Analysis of Isotropic Solids using Conservation Laws of Elasticity. Journal of Applied Mechanics, 47, pp.335-341. https://doi.org/10.1115/1.3153665
  22. Yoon, Y.C., Kim, D.J., Lee, S.H. (2007) A Gridless Finite Difference Method for Elastic Crack Analysis, J. Comput Struct. Eng., 20(3), pp.321-327.
  23. Yoon, Y.C., Lee, S.H. (2009) Intrinsically Extended Moving Least Squares Finite Difference Method for Potential Problems with Interfacial Boundary, J. Comput Struct. Eng., 22(5) pp.411-420.
  24. Yoon, Y.C., Kim, K.H., Lee, S.H. (2012) Dynamic Algorithm for Solid Problems using MLS Difference Method, J. Comput. Struct. Eng., 25(2), pp.139-148.
  25. Zhang, X., Liu, X.H., Song, K.Z., Lu, M.W. (2001) Least-squares Collocation Meshless Method, International Journal for Numerical Methods in Engineering, 51, pp.1089-1100. https://doi.org/10.1002/nme.200
  26. Zhu, T., Atluri, S.N. (1998) A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method, Computational Mechanics, 21, pp.211-222. https://doi.org/10.1007/s004660050296

피인용 문헌

  1. Dynamic Analysis of MLS Difference Method using First Order Differential Approximation vol.31, pp.6, 2018, https://doi.org/10.7734/COSEIK.2018.31.6.331