DOI QR코드

DOI QR Code

Navigational Path Detection Using Fuzzy Binarization and Hough Transform

퍼지 이진화와 허프 변환을 이용한 주행 경로 검출

  • 우영운 (동의대학교 멀티미디어공학과)
  • Received : 2014.01.28
  • Accepted : 2014.02.12
  • Published : 2014.02.28

Abstract

In conventional methods for car navigational path detection using Hough transform, navigational path deviation of a car is decided in car navigational images with simple background. But in case of car navigational images having complex background with obstacles on the road, shadows, other cars, and so on, it is very difficult to detect navigational path because these obstacles obstruct correct detection of car navigational path. In this paper, I proposed an effective navigational path detection method having better performance than conventional navigational path detection methods using Hough transform only, and fuzzy binarization method and Canny mask are applied in the proposed method for the better performance. In order to evaluate the performance of the proposed method, I experimented with 20 car navigational images and verified the proposed method is more effective for detection of navigational path.

기존의 허프 변환을 이용한 차량 주행 경로 검출 기법에서는 배경 영상이 복잡하지 않은 차량 주행 영상에서 주행선 이탈 여부를 판별하였다. 하지만 획득된 차량 주행 영상에는 도로의 장애물이나 그림자, 다른 차량 등 주행 경로 인식을 방해하는 요소들이 있으므로 주행 경로 검출에 있어서 매우 큰 장애물로 작용하였다. 이 논문에서는 퍼지 이진화 기법과 캐니 마스크를 적용함으로써 기존에 제안된 허프 변환만을 이용한 주행 경로 검출 기법보다 효과적인 주행 경로 검출 기법을 제안한다. 이 논문에서 제안한 주행 경로 검출 기법의 성능을 평가하기 위하여 20개의 영상을 대상으로 실험한 결과, 주행 경로를 검출하는 데에 더욱 효과적인 것을 확인하였다.

Keywords

References

  1. Dongwook Kim, Hakgu Kim and Kyongsu Yi, "Design of Near-Minimum Time Path Planning Algorithm for Autonomous Driving," Journal of the Korean Society of Mechanical Engineers, Vol. 37, No. 5, pp. 609-617, May 2013. https://doi.org/10.3795/KSME-A.2013.37.5.609
  2. Jungmin Kim, Jungmin Heo, Sungyoung Jung and Sungshin Kim, "Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle," Journal of Korean Institute of Intelligent Systems, Vol. 19, No. 3, Mar. 2009. https://doi.org/10.5391/JKIIS.2009.19.3.381
  3. Gi-Seok Kim, Jin-Wook Lee and Jae-Soo Cho, "Study on Effective Lane Detection Using Hough Transform and Lane Model," Proceeding of ICS 2009, No. 5, pp. 34-36, May 2009.
  4. JaeMook Kang and EungTae Kim, "Effective Lane Detection using Hough Transform," Proceeding of KICIS, Vol. 2009, No. 11, pp. 87-88, Nov. 2009.
  5. Kwang-Baek Kim and Young-Ju Kim, "Enhanced Binarization Method using Fuzzy Membership Function," Journal of the Korea Society of Computer and Information, Vol. 10, No. 1, pp. 67-72, Jan. 2005.
  6. S. K. Pa and R. A. King, "Image enhancement using smoothing with fuzzy sets," IEEE Trans. on SMC, Vol. 11, No. 7, pp. 491-510, Jul. 1981.
  7. L. A. Zadeh, A Fuzzy-Algorithmic Approch to the Definition of Complex or Imprecise Concept, International Journal of Man-Machine Studies, Vol. 8, No. 3, pp. 249-291, May 1976. https://doi.org/10.1016/S0020-7373(76)80001-6
  8. Dae-Young Choi,, Piecewise Linear Transformation Method based on SPMF and Its Application to Linguistic Approximation, Journal of KIPS, Vol. 8-b, No. 4, pp.351-356, Apr. 2001.
  9. R. C. Gonzalez and R. E. Woods, "Digital Image Processing", Addison Wesley, 1992.
  10. Gregory A. Baxes, "Digital Image Processing," John Wiley and Sons Inc, 1994.
  11. Chil-Woo Lee and Min-Young Jung, "C# Digital Image Processing," Miraecom, Seoul, Korea, Mar. 2010.
  12. Jong Ju Choi and Chae Young Jeong, "A Survey on the Detection Methods for GHT for the Image Processing," Journal of the Korea society of computer and information, Vol. 2, No. 1, pp. 63-74, Jan. 1997.