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INVOLUTIONS AND THE FRICKE SPACES OF SURFACES

WITH BOUNDARY

Hong Chan Kim

Abstract. The purpose of this paper is to find expressions of the Fricke
spaces of some basic surfaces which are a three-holed sphere Σ(0, 3), a
one-holed torus Σ(1, 1), and a four-holed sphere Σ(0, 4). For this goal,
we define the involutions corresponding to oriented axes of loxodromic
elements and an inner product 〈 , 〉 which gives the information about
locations of axes of loxodromic elements. The signs of traces of holonomy
elements, which are calculated by lifting a representation from PSL(2,C)
to SL(2,C), play a very important role in determining the discreteness of

holonomy groups.

1. Introduction

The study of PSL(2,C)-character variety of surfaces is quite active in var-
ious areas of topology and geometry such as Kleinian groups, the topological
quantum field theory, complex and real projective structures, and the Fricke
spaces. In particular, the algebraic properties of matrices in PSL(2,C) give
a close relationship between algebra and geometry. Roughly speaking, the
PSL(2,C)-character variety of a smooth surface M is the space of representa-
tions of π1(M) into PSL(2,C) up to conjugation.

A hyperbolic structure on a smooth surface M is a representation of M as a
quotient Ω/Γ of a convex domain Ω ⊂ H2 by a discrete group Γ ⊂ PSL(2,R)
acting properly and freely. Let M = Σ(g, n) be a compact connected oriented
surface with g-genus and n-boundary components. Suppose M has non-empty
boundary. If the Euler characteristic χ(M) = 2− 2g−n of M is negative, then
M admits a hyperbolic structure with geodesic boundary. The deformation
space of hyperbolic structures on M is called the Fricke space of M. The Fricke
space is often identified with the Teichüller space because the uniformization
theorem identifies the hyperbolic structures with the conformal structures on
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M . Since a hyperbolic structure on M produces a discrete faithful homomor-
phism

h : π1(M) → PSL(2,R) ⊂ PSL(2,C)

up to conjugation, the Fricke space F(M) can be considered as a subspace of
the PSL(2,C)-character variety of M .

The purpose of this paper is to find expressions of the Fricke spaces of
some basic surfaces which are a three-holed sphere Σ(0, 3), a one-holed torus
Σ(1, 1), and a four-holed sphere Σ(0, 4). To do these, we define the involutions
corresponding to the oriented axes of loxodromic elements of SL(2,C) and
denote the collection of such involutions by Inv. And we also define an inner
product 〈 , 〉 on Inv which gives the information about locations of axes of
loxodromic and hyperbolic elements. During these processes, we shall find
matrix representations of discrete holonomy groups of surfaces.

In Section 2, we recall some preliminary definitions about the character
varieties and the Fricke spaces of surfaces. In Section 3, we define the sign of
non-zero complex numbers, and the involution corresponding to the oriented
axis of a loxodromic element. From these we present relations between axes of
loxodromic elements. In Sections 4, we calculate the expressions of the Fricke
spaces of Σ(0, 3),Σ(1, 1), and Σ(0, 4) by the values of coordinate characters
which are trace functions on SL(2,C)-character variety.

2. Preliminaries

2.1. Character variety

Let M be a smooth manifold. We denote the set of all representations of
π1(M) into SL(2,C) by RSL(M). Then RSL(M) is an affine algebraic set
because SL(2,C) is an affine algebraic group. The group SL(2,C) acts on
RSL(M) by conjugation. The algebraic quotient

XSL(M) = RSL(M)//SL(2,C)

is called the SL(2,C)-character variety ofM ; i.e., the points in XSL(M) are the
equivalent classes of RSL(M) which are the closures of orbits under SL(2,C)-
conjugation. A representation ρ : π1(M) → SL(2,C) is called irreducible if

ρ(π1(M)) fixes no point of CP1. If we restrict RSL(M) to the set of irreducible
representationsR′

SL(M), then the algebraic quotient X ′

SL(M) is the usual quo-
tient by the action of SL(2,C) and X ′

SL(M) is a Zariski dense open subset of
XSL(M). Procesi’s paper [12] says that the ring of invariants on RSL(M) is
generated by characters

ρ
tγ7−→ tr (ρ(γ))

where ρ ∈ RSL(M) and γ ∈ π1(M). By results of Magnus [9], the SL(2,C)-
character variety is determined by the values of some characters.
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Similarly the PSL(2,C)-character variety of M is defined. The set of all
representations of π1(M) into PSL(2,C) is denoted by RPSL(M). The alge-
braic quotient XPSL(M) is called the PSL(2,C)-character variety of M . A
representation ρ : π1(M) → PSL(2,C) is called irreducible if ρ(π1(M)) fixes
no point of CP1.

2.2. Lifting representations from PSL(2,C) to SL(2,C)

Since the trace is only defined on SL(2,C), we need the conditions which
ensure that a representation into PSL(2,C) lifts to SL(2,C). In general, the
canonical map RSL(M) → RPSL(M) is not surjective since there may exist a
PSL(2,C)-representation which does not lift to a SL(2,C)-representation.

A PSL(2,C)-representation lifts to a SL(2,C)-representation if and only if
the second Stiefel-Whitney class w2(ρ) ∈ H2(M ;Z/2Z) vanishes (Culler [2]).
Therefore ifM is a surface with boundary or equivalently π1(M) is a free group,
then every PSL(2,C)-representation can be lifted to SL(2,C)-representation
since lifting each generator suffices to define a lifted representation. For a closed
surface M of genus g > 1, Goldman [4] showed that RPSL(M) has exactly two
components, one is the set of liftable representations and the other is the set
of non-liftable representations.

If a PSL(2,C)-representation lifts, then any other lift is obtained by the
action of H1(M ;Z/2Z), which is isomorphic to Hom(π1(M),Z/2Z). Thus we
regard an element of H1(M ;Z/2Z) as a function ǫ : π1(M) → {±1} such that
ǫ acts on ρ by (ǫ · ρ)(γ) = ǫ(γ)ρ(γ) for γ ∈ π1(M) (Morgan and Shalen [11]).

For example, suppose M is a three-holed sphere (or a pair of pants) Σ(0, 3).
Then H1(M ;Z/2Z) ∼= Hom(π1(M),Z/2Z) is isomorphic to Z/2Z⊕Z/2Z. Thus
if {A1, A2, A3} with A3A2A1 = I is a lifted SL(2,C)-representation of Σ(0, 3),
then

(1) {−A1,−A2, A3}, {A1,−A2,−A3}, and {−A1, A2,−A3}
are other liftable SL(2,C)-representations. Consider another example M =
Σ(1, 1) a one-holed torus. Then H1(M ;Z/2Z) is isomorphic to Z/2Z⊕ Z/2Z.
Thus if {A,B,C} with CB−1A−1BA = I is a lifted SL(2,C)-representation of
Σ(1, 1), then

(2) {−A,B,C}, {A,−B,C}, and {−A,−B,C}
are other liftable SL(2,C)-representations.

2.3. Fricke spaces

Our main object is the deformation space of hyperbolic structures on a com-
pact oriented surface M = Σ(g, n) with geodesic boundary. Such deformation
space is called the Fricke space by Bers-Gardiner [1].

For a given hyperbolic structure on M, the action of π1(M) on the universal

covering space M̃ produces a homomorphism h : π1(M) → PSL(2,R) called
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the holonomy homomorphism and it is well-defined up to conjugation. The the
holonomy homomorphism induces the holonomy map

hol : F(M) −→ X ′

PSL(2,R)(M) ⊂ X ′

PSL(M)

which is an embedding onto a connected open subset of the irreducible real-
character variety of dimension 6g− 6+3n (Goldman [3]). Therefore the Fricke
space F(M) is diffeomorphic to R6g−6+3n.

3. Matrices and involutions

3.1. Matrices with the fixed points x and y

Recall that SL(2,C) acts on the projective space CP1. Let A be an element
of SL(2,C) with the eigenvalues λ and λ−1. We denote by x the fixed point of
A corresponding to the eigenvalue λ; i.e., x ∈ CP

1 is the projective class of the
eigenvectors of A corresponding to λ. Another fixed point of A corresponding
to λ−1 is denoted by y. If |λ| > 1, then x is the attracting fixed point and y is
the repelling fixed point of A. Suppose A has two distinct fixed points. Then
the matrix A is uniquely determined by λ, x and y as follows. Suppose x and

y are not infinite. The relations A ( x1 ) =
(
λx
λ

)
and A ( y1 ) =

(
λ−1y

λ−1

)
induce

A ( x y
1 1 ) =

(
λx λ−1y

λ λ−1

)
. Therefore the matrix A = A(λ,x,y) is

(3) A(λ,x,y) =
1

x− y

(
λx− λ−1y −(λ− λ−1)xy
λ− λ−1 λ−1x− λy

)
.

We can also calculate
(4)

A(λ,∞,y) =

(
λ −(λ− λ−1)y
0 λ−1

)
and A(λ,x,∞) =

(
λ−1 (λ− λ−1)x
0 λ

)
.

And we can easily show that A(λ−1,y,x) = A(λ,x,y) and A−1
(λ,x,y) = A(λ,y,x).

3.2. Involutions

We are interested in the projective involutions and involutions of CP1. We
define a projective involution of CP1 is a projective transformation in PSL(2,C)
of order two. An involution of CP1 is a transformation ξ in SL(2,C) such that
ξ2 is a scalar matrix but ξ is not.

Proposition 3.1. Let ξ ∈ SL(2,C). Then the followings are equivalent:

(1) ξ is an involution.

(2) ξ2 = −I.
(3) tr(ξ) = 0.
(4) ξ is conjugate to

(
i 0
0 −i

)
.

Proof. (1) ⇒ (2) Suppose ξ2 = kI. Since 12 = det(ξ)2 = det(ξ2) = k2, we have
ξ2 = ±I. If ξ2 = I, then det(ξ) = 1 implies ξ = ±I, a contradiction. (2) ⇒ (3)
From ξ2 − tr(ξ)ξ + I = 0, we get tr(ξ) = 0. (3) ⇒ (4) Since det(ξ) = 1, ξ has
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reciprocal eigenvalues λ and λ−1. The condition tr(A) = 0 induces eigenvalues
are i and −i. (4) ⇒ (1) Obvious. �

We denote the collection of involutions in SL(2,C) by

Inv := SL(2,C) ∩ sl(2,C) = {ξ ∈ SL(2,C) | tr(ξ) = 0}
where sl(2,C) is the set of traceless 2× 2 matrices. The quotient

P(Inv) := Inv/(±I) ⊂ PSL(2,C)

consists of all projective involutions of CP1.

Proposition 3.2. Suppose x and y are two distinct points in CP
1. Then the

projective involution in PSL(2,C) fixing x and y is

(5) ± i

x− y

(
x+ y −2xy
2 −x− y

)
let
= P(ξ(x,y)).

If x = ∞ (or y = ∞), then the corresponding projective involution is

(6) ±i

(
1 −2y
0 −1

)
let
= P(ξ(∞,y))

(
or ± i

(
−1 2x
0 1

)
let
= P(ξ(x,∞))

)
.

Proof. Eigenvalues of each involution are i and −i. Therefore we get P(ξ(x,y)),
P(ξ(∞,y)) and P(ξ(x,∞)) by plugging in λ = ±i for the matrices (3) and (4). �

Since P(ξ(x,y)) = P(ξ(y,x)), it is natural P(Inv) identifies with the collection

of unordered pairs of distinct points in CP
1. We will interpret Inv as the

collection of ordered pairs of distinct points in CP
1.

3.3. 3-dimensional hyperbolic geometry

We use the upper half space model H3 as follows. The algebra of Hamiltonian
quaternion is the R-algebra generated by 1, i, j, k subject to the relations i2 =
j2 = k2 = −1, ij = −ji, jk = −kj and ki = −ik. The upper half space model
H3 is defined by

H
3 := {z + uj | z ∈ C, u ∈ R, u > 0} .

The Lie group SL(2,C) acts on H3 by
(

a b
c d

)
· (z + uj) = (a(z + uj) + b)(c(z + uj) + d)−1 .

The elements of SL(2,C) are classified into three different types (Ratcliffe
[13]). We classify non-central elements (i.e., A 6= ±I) by their eigenvalues and
traces. Suppose λ is an eigenvalue of A such that |λ| ≥ 1;

• A is elliptic ⇔ A fixes a point in H3 ⇔ |λ| = 1 and λ 6= ±1 ⇔
tr(A) ∈ (−2, 2).

• A is parabolic ⇔ A fixes no point in H3 and fixes a unique point in CP
1

⇔ λ = ±1 ⇔ tr(A) = ±2.
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• A is loxodromic ⇔ A fixes no point in H3 and fixes two points in CP
1

⇔ |λ| > 1 ⇔ tr(A) ∈ C\[−2, 2].

Let A be an element of SL(2,C) such that A 6= ±I. Then the following
conditions are equivalent:

• A has two distinct eigenvalues.
• tr(A) 6= ±2.
• A has two distinct fixed points in CP

1.
• A leaves invariant a unique geodesic ℓA in H3, each of whose endpoints
is fixed.

The corresponding transformation of H3 is either elliptic or loxodromic. The
unique invariant geodesic of A is called the axis of A. If A is elliptic, then the
set of fixed points of A is exactly the axis ℓA of A.

Suppose A ∈ SL(2,C) has two distinct fixed points in CP
1. We are going to

find the projective involution P(ξA) ∈ PSL(2,C) such that A and P(ξA) have
the same fixed points. Let A′ = 2A− tr(A)I. Then tr(A′) = 0 and A′A = AA′;
i.e. A′ is a traceless matrix which commutes with A. Since A has two distinct
fixed points, tr(A) 6= ±2. Thus det(A′) = 4− tr(A)2 6= 0. For a non-parabolic
element A =

(
a b
c d

)
∈ SL(2,C), we define

(7) P(ξA) := ± i (2A− tr(A)I)√
tr(A)2 − 4

= ± i√
(a+ d)2 − 4

(
a− d 2b
2c d− a

)
.

If A is an involution in SL(2,C), then we obtain P(ξA) = ±A. If A is not an
involution, then P(ξA)A = AP(ξA) induces the fixed points of P(ξA) and A are
the same. Thus P(ξA) is the projective involution in PSL(2,C).

3.4. Matrix representations for oriented geodesics in H3

Geodesics in H3 correspond to unordered pairs of distinct points in CP
1

via their endpoints. Thus a geodesic ℓ ⊂ H3 corresponds uniquely to the
projective involution P(ξℓ) ∈ PSL(2,C) such that the fixed points in CP

1 are
the endpoints of ℓ. Oriented geodesics correspond to ordered pairs of distinct
points in CP

1. We will represent oriented geodesics in H3 by involutions in
SL(2,C) as follows. Suppose ℓ is an oriented geodesic in H3. Let x be the
attracting endpoint and y the repelling endpoint of ℓ. By (5) and (6), we can
find involutions ξℓ and −ξℓ ∈ SL(2,C) which fix x and y. Since eigenvalues of
each involution are distinct, ξℓ has 1-dimensional eigenspaces corresponding to
i and −i. These eigenspaces determine the fixed points in CP

1. Exchanging ξℓ
with −ξℓ interchanges the ±i-eigenspaces. In this way, we identify the collection
of oriented geodesics in H3 with the space of involutions Inv ⊂ SL(2,C).

Definition. The (−i)-eigenspace of an involution in Inv corresponds to the
repelling endpoint of an oriented geodesic in H3. Another i-eigenspace corre-
sponds to the attracting endpoint of an oriented geodesic.
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For example, the involution
(
i 0
0 −i

)
represents the oriented geodesic from

0 to ∞, since ( 0
1 ) and ( 10 ) are the eigenvectors of

(
i 0
0 −i

)
corresponding to

the eigenvalues −i and i respectively. Similarly
(
−i 0
0 i

)
represents the oriented

geodesic from ∞ to 0.

Suppose A is a loxodromic element of SL(2,C). Then the axis of A has
the orientation from the repelling fixed point to the attracting fixed point.
To determine the involution ξA ∈ Inv corresponding to a loxodromic element
A ∈ SL(2,C), we need to define the sign of z ∈ C. We choose the negative real
axis for a branch cut of arg z; i.e. arg z ∈ (−π, π] for a nonzero z in C. Then
we can define the root of z as a single valued function by

(8)
√
z :=

√
reiθ/2

for z = reiθ with r > 0 and θ ∈ (−π, π].

Definition. For a nonzero complex number z, the sign of z is defined by
sgn(z) = 1 if arg(z) ∈ (−π

2 ,
π
2 ] and sgn(z) = −1 otherwise.

For any nonzero real number x ∈ R, sgn(x) = 1 if x > 0 and sgn(x) = −1 if

x < 0. And we have sgn(x)x = |x| =
√
x2. By the definition of sign, sgn(i) = 1

and sgn(−i) = −1. Thus
√
i2 =

√
−1 = i = sgn(i)i and

√
(−i)2 =

√
−1 = i =

−(−i) = sgn(−i)(−i). Generally we have the following Proposition 3.3.

Proposition 3.3.
√
z2 = sgn(z) z for any nonzero z in C.

Proof. If arg(z) = θ ∈ (−π
2 ,

π
2 ], then arg(z2) = 2θ ∈ (−π, π]. Thus

√
z2 =√

r2ei(2θ/2) = reiθ = z = sgn(z) z. If arg(z) = θ ∈ (π2 , π], then arg(z2) =

2θ − 2π ∈ (−π, 0]. Thus
√
z2 =

√
r2ei(2θ−2π)/2 = reiθ(−1) = −z = sgn(z) z.

Similarly we can show
√
z2 = −z = sgn(z) z for arg(z) = θ ∈ (−π,−π

2 ]. �

Now we can determine the involution ξA ∈ Inv corresponding to a loxo-
dromic element A ∈ SL(2,C).

Theorem 3.4. Suppose A ∈ SL(2,C) is a loxodromic element with the oriented

axis ℓA. Then the involution ξA ∈ Inv corresponding to A (or the axis ℓA) is

(9) ξA =
ε i (2A− tr(A)I)√

tr(A)2 − 4
=

ε i√
(a+ d)2 − 4

(
a− d 2b
2c d− a

)

where ε = sgn(tr(A)).

Proof. Suppose λ is the eigenvalue of a loxodromic element A such that |λ| > 1.
Let x and y be the attracting and repelling fixed points of A respectively. If
x and y are finite, then the loxodromic transformation A is expressed by the
matrix A(λ,x,y) in (3). Thus ξA is

ξA =
ε i√

(λ+ λ−1)2 − 4

(λ − λ−1)

(x− y)

(
x+ y −2xy
2 −x− y

)



410 HONG CHAN KIM

=
ε i(λ− λ−1)√
(λ− λ−1)2

1

(x − y)

(
x+ y −2xy
2 −x− y

)

=
ε i

sgn(λ− λ−1)

1

(x− y)

(
x+ y −2xy
2 −x− y

)
.

Since

ξA

(
x
1

)
=

ε i

sgn(λ− λ−1)

(
x
1

)
and ξA

(
y
1

)
=

ε (−i)

sgn(λ− λ−1)

(
y
1

)
,

ξA is the involution corresponding to the oriented geodesic ℓA if and only if x
and y are the eigenspaces corresponding to the eigenvalues i and −i respectively
if and only if ε = sgn(λ− λ−1). Let λ = reiθ , then

λ+ λ−1 = (r + r−1) cos θ + i(r − r−1) sin θ

and

λ− λ−1 = (r − r−1) cos θ + i(r + r−1) sin θ.

Since r = |λ| > 1, two nonzero complex numbers λ− λ−1 and tr(A) = λ+ λ−1

are contained in the same quadrant. Therefore sgn(λ−λ−1) = sgn(tr(A)). We
can prove similarly for the cases x = ∞ or y = ∞. It completes the proof. �

Corollary 3.5. Let ξA be the involution in Inv corresponding to a loxodromic

element A ∈ SL(2,C). Then ξ−A = ξA and ξA−1 = −ξA.

Proof. We denote εA = sgn(tr(A)). Then we have ε−A = −εA. Thus

ξ−A =
(−ε) i (2(−A)− tr(−A)I)√

tr(−A)2 − 4
=

(−1)2ε i (2A− tr(A)I)√
tr(A)2 − 4

= ξA.

From A2 − tr(A)A+ I = 0, we induce 2A− 2tr(A)I + 2A−1 = 0. Thus

ξA−1 =
ε i

(
2A−1 − tr(A−1)I

)
√
tr(A−1)2 − 4

=
ε i (−2A+ tr(A)I)√

tr(A)2 − 4
= −ξA

since 2A−1 − tr(A−1)I = 2A−1 − tr(A)I = tr(A)I − 2A. �

Remark 3.6. If we define the involution ξA without the sign of tr(A) (i.e.,

ξA = i(2A−tr(A)I)√
tr(A)2−4

), then ξ−A becomes −ξA. Thus ε = sgn(tr(A)) is essential

to define ξA since A and −A have exactly the same oriented axes. The second
relation represents the orientation ℓA−1 is opposite to that of ℓA.

For example, let A =
(

µ 0

0 µ−1

)
be a loxodromic element. Then the involution

corresponding to A is

ξA =
sgn(µ+ µ−1)

sgn(µ− µ−1)

(
i 0
0 −i

)
.

Thus ξA =
(
i 0
0 −i

)
if |µ| > 1 and ξA =

(
−i 0
0 i

)
if 0 < |µ| < 1.
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3.5. 2-dimensional hyperbolic geometry

We define the hyperbolic plane H2 by

H
2 := {z + uj ∈ H

3 | z ∈ R}.
Then a transformation A ∈ SL(2,C) preserves H2 if and only if A ∈ SL(2,R)
or A ∈ SL(2, iR); i.e., A is a real matrix of determinant 1 or A is a purely-
imaginary matrix of determinant 1. The first case is an orientation-preserving
transformation of H2 and the second case is orientation-reversing.

Suppose ℓ is an oriented geodesic in H2 with the attracting endpoint x and
the repelling endpoint y. Then the corresponding involutions is

(10) ξ(x,y) =
i

x− y

(
x+ y −2xy
2 −x− y

)

by Proposition 3.2 and Theorem 3.4. Since x, y ∈ RP
1, ξ(x,y) is a purely-

imaginary matrix. Therefore we can identify the space of oriented geodesics in
H2 with the collection of involutions in SL(2, iR), that is

{ξ ∈ SL(2, iR) | tr(ξ) = 0} ⊂ Inv.

3.6. Inner product of sl(2,R)

We think of sl(2,R) as a 3-dimensional space with the signature (2, 1) as
follows. Let R

2,1 be the 3-dimensional space with the (2, 1)-signature inner
product such that

〈v, w〉 = v1w1 + v2w2 − v3w3.

The function Φ : R2,1 → sl(2,R) defined by

Φ(v) = Φ(v1, v2, v3) =

(
v1 v2 − v3

v2 + v3 −v1

)

produces an equivariant (2, 1)-signature inner product of sl(2,R) such that

〈ξ, η〉 := 〈Φ−1(ξ),Φ−1(η)〉
for ξ, η ∈ sl(2,R).

Proposition 3.7. Let ξ, η ∈ sl(2,R). Then

(11) 〈ξ, η〉 = 1

2
tr(ξη).

is a (2, 1)-signature inner product of sl(2,R).

Proof. Since the inverse Φ−1 : sl(2,R) → R2,1 is

Φ−1

(
a b
c −a

)
=

(
a,

1

2
(c+ b),

1

2
(c− b)

)
,

we can show 〈Φ−1(ξ),Φ−1(η)〉 = 1
2 tr(ξη) through some computations. �
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3.7. Locations of axes

A loxodromic element A in SL(2,R) is called hyperbolic. Thus a hyperbolic
element A is an orientation-preserving transformation of H2 such that A has
exactly two fixed points on ∂H2 = RP

1. The axis of a hyperbolic element A
is an oriented geodesic in H2. Thus there exists the corresponding involution
ξA ∈ SL(2, iR) by Theorem 3.4. Since tr(A) > 2 or tr(A) < −2 for a hyperbolic
element A, the sign of tr(A) is 1 if tr(A) is positive and −1 otherwise.

We say two distinct geodesics in H2 are crossing if they intersect in H2,
asymptotic if they do not intersect in H

2 but one of their endpoints are the
same, and separated if the closures of geodesics do not intersect in H2 ∪ ∂H2.
Given an oriented geodesic ℓ in H2, we define a well-determined open half-
plane in H2, which is bounded by ℓ. The choice of half-plane Hℓ ⊂ H2 \ ℓ is
the righthand-side half-plane when we walk along the oriented geodesic ℓ.

Definition. Suppose two oriented geodesics ℓ1 and ℓ2 in H2 are asymptotic
or separated. We say ℓ1 and ℓ2 are with the same direction if the half-planes
Hℓ1 ∩ Hℓ2 = ∅ or Hℓ1 ∪ Hℓ2 = H2. ℓ1 and ℓ2 are with the opposite direction if
Hℓ1 ⊂ Hℓ2 or Hℓ2 ⊂ Hℓ1 .

We extend the inner product of sl(2,R) to the space of involutions Inv which
is sl(2,C) ∩ SL(2,C). For involutions ξ, η ∈ Inv, we define

(12) 〈ξ, η〉 := 1

2
tr(ξη).

Then the value 〈ξ, η〉 represents the locations of oriented geodesics in H3 cor-
responding to ξ and η.

Theorem 3.8. Suppose A1, A2 ∈ SL(2,R) are hyperbolic elements with dis-

tinct oriented axes ℓ1, ℓ2 in H2 respectively. Let ξ1, ξ2 be corresponding involu-

tions in SL(2, iR) to the axes ℓ1, ℓ2 respectively. Then the following conditions

are equivalent:

(1) 〈ξ1, ξ2〉 > 1 ⇐⇒ ℓ1, ℓ2 are separated with the same direction.

(2) 〈ξ1, ξ2〉 < −1 ⇐⇒ ℓ1, ℓ2 are separated with the opposite direction.

(3) 〈ξ1, ξ2〉 = 1 ⇐⇒ ℓ1, ℓ2 are asymptotic with the same direction.

(4) 〈ξ1, ξ2〉 = −1 ⇐⇒ ℓ1, ℓ2 are asymptotic with the opposite direction.

(5) −1 < 〈ξ1, ξ2〉 < 1 ⇐⇒ ℓ1, ℓ2 are crossing.

(6) 〈ξ1, ξ2〉 = 0 ⇐⇒ ℓ1, ℓ2 are orthogonal.

Proof. Let B = PAP−1. Then ξB = PξAP
−1. Thus the value 〈ξ, η〉 is a

conjugacy invariant. Without loss of generality, we may assumeA1 is a diagonal
matrix

(
λ 0
0 λ−1

)
with λ2 > 1. Suppose x and y are the attracting and repelling

fixed points of A2, respectively. Then we have

ξ1 =

(
i 0
0 −i

)
and ξ2 =

i

x− y

(
x+ y −2xy
2 −x− y

)
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from (10). Thus

〈ξ1, ξ2〉 =
1

2
tr(ξ1ξ2) =

y + x

y − x
.

(1) Recall that ℓ1 is the oriented geodesic from 0 to ∞. Then oriented geodesics
ℓ1, ℓ2 are separated with the same direction ⇔ y < x < 0 or 0 < x < y ⇔
x(y − x) > 0 ⇔ y+x

y−x > 1. (2) We can similarly show that ℓ1, ℓ2 are separated

with the opposite direction ⇔ x < y < 0 or 0 < y < x ⇔ y(y − x) < 0 ⇔
y+x
y−x < −1. (3) ℓ1, ℓ2 are asymptotic with the same direction ⇔ x = 0 or y = ∞
⇔ 〈ξ1, ξ2〉 = 1. (4) ℓ1, ℓ2 are asymptotic with the opposite direction ⇔ y = 0
or x = ∞ ⇔ 〈ξ1, ξ2〉 = −1. (5) ℓ1, ℓ2 are crossing if and only if x < 0 < y or

y < 0 < x ⇔ xy < 0 ⇔ (y + x)2 < (y − x)2 ⇔
(

y+x
y−x

)2

< 1. (6) ℓ1, ℓ2 are

orthogonal ⇔ x = −y ⇔ y+x
y−x = 0. �

For loxodromic elements in SL(2,C), we have the following similar results.

Corollary 3.9. Suppose A1, A2 ∈ SL(2,C) are loxodromic elements with dis-

tinct oriented axes ℓ1, ℓ2 in H
3 respectively. Let ξ1, ξ2 be corresponding involu-

tions in Inv to the axes ℓ1, ℓ2 respectively. Then the following conditions are

equivalent:

(1) 〈ξ1, ξ2〉 ∈ (−1, 1) ⇐⇒ ℓ1, ℓ2 are crossing.

(2) 〈ξ1, ξ2〉 = 0 ⇐⇒ ℓ1, ℓ2 are orthogonal.

(3) 〈ξ1, ξ2〉 = 1 ⇐⇒ ℓ1, ℓ2 are asymptotic with the same direction.

(4) 〈ξ1, ξ2〉 = −1 ⇐⇒ ℓ1, ℓ2 are asymptotic with the opposite direction.

(5) 〈ξ1, ξ2〉 ∈ C\[−1, 1] ⇐⇒ ℓ1, ℓ2 are separated.

Proof. Use the same assumption in the proof of Theorem 3.8. Without loss of
generality, we may assume the axis ℓ1 is the oriented geodesic from 0 to ∞.
Note that if x and y are the fixed points of A2, then P (x) and P (y) are fixed
points of PA2P

−1. For the cases (1) ∼ (4), there exists a rotation P ∈ SL(2,C)
around the axis ℓ1 such that the fixes points of PA2P

−1 lie in ∂H2. Thus the
axis of PA2P

−1 is contained in H2. Since the value 〈ξ1, ξ2〉 is a conjugacy
invariant, we have the same results in Theorem 3.8 for cases (1) ∼ (4). The
case (5) is obvious by contraposition. �

The value 〈ξ1, ξ2〉 can be calculated from the traces and signs of matrices.

Proposition 3.10. Suppose A1, A2 ∈ SL(2,C) are loxodromic elements. Let

ξj be the involution in Inv corresponding to Aj. Then

(13) 〈ξ1, ξ2〉 =
ε1ε2(t1t2 − 2t12)√

t21 − 4
√
t22 − 4

where εj = sgn(tr(Aj)), tj = tr(Aj) and t12 = tr(A1A2).
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Proof. From Theorem 3.4, we know

ξj =
εj i√

tr(Aj)2 − 4
(2Aj − tr(Aj)I) =

εj i√
t2j − 4

(2Aj − tjI) .

Thus

〈ξ1, ξ2〉

=
1

2
tr(ξ1ξ2)

=
ε1ε2 i

2

2
√
t21 − 4

√
t22 − 4

tr (4A1A2 − 2t2A1 − 2t1A2 + t1t2I)

=
−ε1ε2

2
√
t21 − 4

√
t22 − 4

{4tr(A1A2)− 2t2tr(A1)− 2t1tr(A2) + t1t2tr(I)}

=
−ε1ε2

2
√
t21 − 4

√
t22 − 4

{4t12 − 2t2t1 − 2t1t2 + 2t1t2} =
ε1ε2(t1t2 − 2t12)√

t21 − 4
√
t22 − 4

.
�

In the following Corollary 3.11, we know that the relations between axes ℓ1
and ℓ2 are completely determined by signs and traces of corresponding matrices.
In this case, the sign of the function

(14) f12 := t21 + t22 + t212 − t1t2t12 − 4

is important.

Corollary 3.11. Let A1, A2 ∈ SL(2,R) be hyperbolic elements and ξj the

involution corresponding to Aj. Then the following conditions are equivalent:

(1) 〈ξ1, ξ2〉 > 1 ⇐⇒ ε1ε2(t1t2 − 2t12) > 0 and f12 > 0.
(2) 〈ξ1, ξ2〉 = 1 ⇐⇒ ε1ε2(t1t2 − 2t12) > 0 and f12 = 0.
(3) −1 < 〈ξ1, ξ2〉 < 1 ⇐⇒ f12 < 0.
(4) 〈ξ1, ξ2〉 = −1 ⇐⇒ ε1ε2(t1t2 − 2t12) < 0 and f12 = 0.
(5) 〈ξ1, ξ2〉 < −1 ⇐⇒ ε1ε2(t1t2 − 2t12) < 0 and f12 > 0,

where f12 = t21 + t22 + t212 − t1t2t12 − 4.

Proof. (1) From Proposition 3.10, 〈ξ1, ξ2〉 > 1 is equivalent to

ε1ε2(t1t2 − 2t12) >
√
t21 − 4

√
t22 − 4

⇔ ε1ε2(t1t2 − 2t12) > 0 and (t1t2 − 2t12)
2 > (t21 − 4)(t22 − 4)

⇔ ε1ε2(t1t2 − 2t12) > 0 and t21 + t22 + t212 − t1t2t12 − 4 = f12 > 0.

Similarly we can calculate others. �

From results of Corollary 3.11 and Theorem 3.8, we obtain the following
relations;

f12 > 0 ⇐⇒ ℓ1 and ℓ2 are separated

f12 = 0 ⇐⇒ ℓ1 and ℓ2 are asymptotic
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f12 < 0 ⇐⇒ ℓ1 and ℓ2 are crossing.

4. Fricke spaces of surfaces

Recall M = Σ(g, n) is a compact connected oriented surface with g-genus
and n-boundary components. The Fricke space F(M) of M is the isotopy
classes of hyperbolic structures on M with geodesic boundary.

Let X be a smooth manifold and G an algebraic Lie group. For a general
(G,X)-structure on M , the holonomy homomorphism h : π1(M) → G is lo-
cally injective. It may be not injective (Sullivan and Thurston [14], Weil [15]).
For the real projective structure, the holonomy homomorphism h : π1(M) →
PGL(n,R) is generally not injective. But if the real projective structure is
convex, then h is injective (Goldman [5]). Since the convex real projective
structures are an extension of the hyperbolic structures (Kim [7]), the holo-
nomy homomorphism h is injective for the hyperbolic structures. Thus the
holonomy homomorphism h : π1(M) → PSL(2,R) is an isomorphism onto its
image Γ called the holonomy group. Hence we identify the fundamental group
π1(M) with the holonomy group Γ.

Giving a hyperbolic structure on M is equivalent to finding a discrete em-
bedding h : π → PSL(2,R) up to conjugation since a faithful holonomy ho-
momorphism induces a developing map into H2(Matsuzaki and Taniguchi [10],
Goldman [6]).

In this section, we will find the Fricke spaces of a three-holed sphere Σ(0, 3),
a one-holed torus Σ(1, 1), and a four-holed sphere Σ(0, 4). And we will present
an expression of generators of the holonomy group of each surfaces in terms of
SL(2,R) instead of PSL(2,R). Since we only deal with surfaces with boundary,
the lift of a representation from PSL(2,R) to SL(2,R) is always possible.

4.1. Three-holed sphere Σ(0, 3)

Suppose M = Σ(0, 3) is a three-holed sphere with boundary components
A1, A2, A3 subject to the relation

(15) A3A2A1 = I.

Suppose M is equipped with a hyperbolic structure. Then every nontrivial
element of holonomy group is hyperbolic due to Kuiper [8]. Thus A1, A2, A3 ∈
SL(2,R) with tr(Aj)

2 > 4 for each j.

Theorem 4.1. Suppose A1, A2, A3 ∈ SL(2,R) are hyperbolic elements such

that A3A2A1 = I. Let ξj be the involution in Inv corresponding to Aj and

εj = sgn(tr(Aj)). Then 〈ξ1, ξ2〉 > 1, 〈ξ2, ξ3〉 > 1, 〈ξ3, ξ1〉 > 1 if and only if

ε1ε2ε3 = −1.

Proof. Since A3A2A1 = I, we have

t12 = tr(A1A2) = tr(A2A1) = tr(A−1
3 ) = tr(A3) = t3.
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By Corollary 3.11-(1), 〈ξ1, ξ2〉 > 1 is equivalent to

ε1ε2(t1t2 − 2t3) > 0 and t21 + t22 + t23 − t1t2t3 − 4 > 0.

By symmetry, we get 〈ξ1, ξ2〉 > 1, 〈ξ2, ξ3〉 > 1, 〈ξ3, ξ1〉 > 1 if and only if

(16) εiεj(titj − 2tk) > 0

for distinct indices i, j, k, and

(17) t21 + t22 + t23 − t1t2t3 − 4 > 0.

(⇐) Suppose ε1ε2ε3 = −1. Then t2j = tr(Aj)
2 > 4 and t1t2t3 < −8. Thus

t21 + t22 + t23 − t1t2t3 − 4 > 4 + 4 + 4 + 8 − 4 > 0. And εiεj(titj − 2tk) =
(εiti)(εjtj) − 2(εiεjεk)(εktk) = |ti||tj | + 2|tk| > 0. Therefore Equations (16)
and (17) hold.

(⇒) Suppose Equation (16) holds. Then it is equivalent to

(18) |ti||tj | > 2(ε1ε2ε3)|tk|.
The value ε1ε2ε3 is 1 or −1. We will show that if ε1ε2ε3 = 1, then Equation
(17) is not true. Therefore ε1ε2ε3 must be −1. Without loss of generality, we
assume 2 < |t1| ≤ |t2| ≤ |t3|. If ε1ε2ε3 = 1, then Equation (18) becomes

|t1||t2| > 2|t3|.
Since we have the relation (|t1| − |t2|)2 < (|t3| − 2)

2
, we obtain

(|t1| − |t2|)2 + |t3|2 < (|t3| − 2)
2
+ |t3|2 = 2|t3|(|t3| − 2) + 4

< |t1||t2|(|t3| − 2) + 4 = |t1||t2||t3| − 2|t1||t2|+ 4.

Thus t21 + t22 + t23 − t1t2t3 − 4 = t21 + t22 + t23 − (ε1ε2ε3)t1t2t3 − 4 = |t1|2 + |t2|2 +
|t3|2 − |t1||t2||t3| − 4 < 0. This contradicts Equation (17). �

From Theorem 3.8, we know 〈ξ1, ξ2〉 > 1, 〈ξ2, ξ3〉 > 1, and 〈ξ3, ξ1〉 > 1
is equivalent to all axes of A1, A2, A3 are mutually separated with the same
direction. In this case, we will show that the axes of A1, A2, A3 are located as
in Figure 1 up to conjugation.

Proposition 4.2. Suppose A1, A2, A3 ∈ SL(2,R) are hyperbolic elements such

that A3A2A1 = I. Let ξj be the involution corresponding to Aj . If 〈ξ1, ξ2〉 >
1, 〈ξ2, ξ3〉 > 1, and 〈ξ3, ξ1〉 > 1, then the axis of A3 is located between the

repelling fixed point of A1 and the attracting fixed point of A2.

Proof. Denote by xi the attracting fixed point of Ai and yi the repelling fixed
point of Ai. Then the possible locations of axis of A3 are between y2 and
x1 or y1 and x2. Without loss of generality, we assume the axis of A2 is the
geodesic from 0 to ∞ and the axis of A1 is located in the positive real part of
H2; i.e., we assume y2 = 0, x2 = ∞ and 0 < x1 < y1. In the first case, we have
0 < x3 < y3 < x1 < y1. Since A2(z) > z for any z > 0 and y3 < A1(y3) < x1, we
get y3 = A2A1A3(y3) = A2(A1(y3)) > A1(y3) > y3. Contradiction. Therefore
the axis of A3 must be located between y1 and x2. �
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0 = y2

∞ = x2

x1 y1 x3 y3

A1

A2

A3

Figure 1. The locations of axes A1, A2, A3 with A3A2A1 = I.

Suppose A1, A2, A3 are hyperbolic matrices in SL(2,R). Then a holonomy
group

Γ = 〈A1, A2, A3 | A3A2A1 = I 〉
of a three-holed sphere Σ(0, 3) is discrete if and only if the axes of A1, A2, A3

are located as in Figure 1 up to conjugation.
The SL(2,C)-character variety XSL(M) is coordinated by the values of some

characters(=trace functions). Since the Fricke space F(M) is contained in
the PSL(2,R)-character variety of M , F(M) is represented by the values of
coordinate traces modulo the action of H1(M ;Z/2Z).

Theorem 4.3. The Fricke space of a three-holed sphere Σ(0, 3) identifies with

the open subset of R3 such that

(19)
{
(t1, t2, t3) ∈ R

3 | ti < −2
}
;

i.e., F(Σ(0, 3)) ∼= (−∞,−2)3.

Proof. By the result of Theorem 4.1 and the various of lifts from PSL(2,R) to
SL(2,R) in (1), the possible traces of A1, A2, A3 are

F̃0,3
let
= (2,∞)× (2,∞)× (−∞,−2)

⋃
(2,∞)× (−∞,−2)× (2,∞)

⋃
(−∞,−2)× (2,∞)× (2,∞)

⋃
(−∞,−2)× (−∞,−2)× (−∞,−2).

Thus F(Σ(0, 3)) = F̃0,3/H
1(M ;Z/2Z) ∼= (−∞,−2)3 since points of the Fricke

space are considered as representations into PSL(2,R) up to conjugation. �

We give a matrix representation of a discrete holonomy group of a three-
holed surface Σ(0, 3) up to conjugation. By the discreteness, without loss of
generality, we assume

(20) A1 =
1

y − x

(
λ−1y − λx (λ− λ−1)xy
−(λ− λ−1) λy − λ−1x

)
, A2 =

(
µ 0
0 µ−1

)

with λ < −1, µ < −1 and 0 < x < y (Compare with the matrix in (3)). Then
x is the attracting and y is the repelling fixed point of A1, respectively since
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|λ| > 1. Let

(21) A3 = A−1
1 A−1

2 =
1

y − x

(
(λy − λ−1x)µ−1 −(λ− λ−1)xyµ
(λ− λ−1)µ−1 (λ−1y − λx)µ

)
.

Then we obtain A3A2A1 = I and the trace of A3 is

tr(A3) =
1

y − x

{
(λµ−1 + λ−1µ)y − (λ−1µ−1 + λµ)x

}
.

We can easily compute

tr(A3) = k ⇐⇒ y

x
=

λµ+ λ−1µ−1 − k

λµ−1 + λ−1µ− k
.

Thus the matrix A3 can be all three types; hyperbolic, parabolic and elliptic.
For any k < −2, if we set

y = λµ+ λ−1µ−1 − k and x = λµ−1 + λ−1µ− k,

then 0 < x < y and A3 becomes a hyperbolic matrix with tr(A3) = k < −2.
Therefore above matrices in (20) and (21) are a representation of a discrete
holonomy group of a three-holed surface Σ(0, 3) because the trace of each matrix
is less than −2. And we also have a condition

tr(A3) < −2 ⇐⇒ y

x
<

(
λµ+ 1

λ+ µ

)2

.

4.2. One-holed torus Σ(1, 1)

Suppose M = Σ(1, 1) is a one-holed torus with holonomy elements A,B,C
subject to the relation

(22) CB−1A−1BA = I.

The elements A,B correspond to simple closed curves on Σ(1, 1) which intersect
transversely at one point and C corresponds to boundary component.

The following Trace Identity is essential to compute traces of matrices which
have some relations. It gives a very useful formula to calculate traces. For
example, if matrices A,B and C have the relation CB−1A−1BA = I, then we
can compute tr(C) from tr(A), tr(B) and tr(AB).

Proposition 4.4 (Trace Identity). Suppose A,B ∈ SL(2,C). Then

(23) tr(AB) = tr(A)tr(B)− tr(A−1B).

Proof. For any 2× 2 matrix A, we have the equation

(24) A2 − tr(A)A+ det(A)I = 0.

Let A,B ∈ SL(2,C). Right-multiplying Equation (24) by A−1B, we obtain
AB − tr(A)B +A−1B = 0. Therefore tr(AB) = tr(A)tr(B)− tr(A−1B). �

Remark 4.5. Since tr(A−1B) = tr(BA−1) = tr(AB−1), we also obtain

tr(AB) = tr(A)tr(B)− tr(AB−1).
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Proposition 4.6. Suppose A,B,C ∈ SL(2,C) with CB−1A−1BA = I. Then

(25) tr(C) = tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB)− 2.

Proof. Since C = A−1B−1AB, we know tr(C) = tr(A−1B−1AB). Thus

tr(C) = tr((BA)−1AB) = tr(BA)tr(AB)− tr(BAAB)

= tr(AB)2 −
(
tr(B)tr(A2B)− tr(B−1A2B)

)

= tr(AB)2 − tr(B)tr(A2B) + tr(A2)

= tr(AB)2 − tr(B)
(
tr(A)tr(AB) − tr(A−1AB)

)
+
(
tr(A)2 − tr(I)

)

= tr(AB)2 − tr(B)tr(A)tr(AB) + tr(B)2 + tr(A)2 − 2

= tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB)− 2.

by repeatedly applying Trace Identity (23). �

For A,B ∈ SL(2,C), we define

(26) fAB := t2A + t2B + t2AB − tAtBtAB − 4,

where tA = tr(A), tB = tr(B) and tAB = tr(AB) (Compare with the definition
of f12 in (14); They are exactly the same). From Proposition 4.6, we induce
that the trace of commutator ABA−1B−1 is fAB + 2 ; i.e.,

(27) tr(ABA−1B−1) = fAB + 2 = t2A + t2B + t2AB − tAtBtAB − 2.

Suppose a one-holed torus Σ(1, 1) is equipped with a hyperbolic structure;
i.e., A,B,C are hyperbolic matrices in SL(2,R). Then a holonomy group

Γ = 〈A,B,C | CB−1A−1BA = I 〉
of Σ(1, 1) is discrete if and only if the axes of A,B,C are located as in Figure
2 up to conjugation.

Theorem 4.7. Suppose A,B,C ∈ SL(2,R) are hyperbolic elements such that

CB−1A−1BA = I. Let ξA, ξB, ξC be the involutions corresponding to A,B,C
respectively. Let εA = sgn(tr(A)), εB = sgn(tr(B)) and εC = sgn(tr(C)). Then

〈ξA, ξB〉 ∈ (−1, 1), 〈ξA, ξC〉 > 1, 〈ξB, ξC〉 < −1 if and only if εC = −1.

Proof. (⇐) Suppose εC = −1. Then tC = tr(C) < −2 since C is hyperbolic.
From Equation (25), we know tC = t2A+ t2B + t2AB − tAtBtAB −2. Thus we have

fAB = t2A + t2B + t2AB − tAtBtAB − 4 = tC − 2 < −4 < 0.

Therefore 〈ξA, ξB〉 ∈ (−1, 1) by Corollary 3.11-(3).
Since AC = B−1AB, we have tAC = tA. Then εAεC(tAtC − 2tAC) =

εAεC(tAtC − 2tA) = |tA|(|tC | − 2εC) = |tA|(|tC |+ 2) > 0 and

fAC = t2A + t2C + t2AC − tAtCtAC − 4 = t2A + t2C + t2A − tAtCtA − 4

= t2A (2− tC) + (t2C − 4) > 0.

Thus 〈ξA, ξC〉 > 1 by Corollary 3.11-(1).
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From CB−1 = A−1B−1A, we obtain tB−1C = tCB−1 = tB−1 = tB . By Trace
Identity (23), we have tBC = tBtC − tB−1C = tBtC − tB. Then

εBεC(tBtC − 2tBC) = εBεC(tBtC − 2tBtC + 2tB)

= |tB |(−|tC |+ 2εC) = |tB|(−|tC | − 2) < 0

and

fBC = t2B + t2C + t2BC − tBtCtBC − 4

= t2B + t2C + (tBtC − tB)
2 − tBtC (tBtC − tB)− 4

= t2B (2− tC) + (t2C − 4) > 0.

Thus 〈ξB , ξC〉 < −1 by Corollary 3.11-(5).
(⇒) Since 〈ξA, ξB〉 ∈ (−1, 1), we have fAB = tC − 2 < 0 by Corollary

3.11-(3). Since C is hyperbolic, we get tC < −2 ⇔ εC = −1. �

A

B C

0

∞

x y

Figure 2. The locations of axes A,B,C with CB−1A−1BA = I.

From Theorem 4.7, the only condition for the discreteness of a holonomy
group of a one-holed torus is tr(C) < −2. Because tr(C) is expressed by the
values of tr(A), tr(B) and tr(AB), the coordinate traces of the Fricke space of
Σ(1, 1) will be tA, tB and tAB.

Proposition 4.8. Suppose A,B ∈ SL(2,R) are hyperbolic elements. If the

axes of A and B are crossing, then AB is hyperbolic and εAεBεAB = 1 where

εA = sgn(tr(A)), εB = sgn(tr(B)) and εAB = sgn(tr(AB)).

Proof. Without loss of generality, we may assume the axes of A and B are
located as in Figure 2. Then

(28) A =
1

y − x

(
λ−1y − λx (λ− λ−1)xy
−(λ− λ−1) λy − λ−1x

)
, B =

(
µ−1 0
0 µ

)

with λ2 > 1, µ2 > 1 and x < 0 < y. Then

(29) AB =
1

y − x

(
(λ−1y − λx)µ−1 (λ− λ−1)xyµ
−(λ− λ−1)µ−1 (λy − λ−1x)µ

)
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and the trace of AB is

tr(AB) =
1

y − x

{
(λ−1µ−1 + λµ)y − (λµ−1 + λ−1µ)x

}
.

Since λ2 > 1 and µ2 > 1, there are two possibilities for the sign of λµ. Recall
that x < 0 < y. If λµ > 1, then

tr(AB) − 2 =
1

(y − x)λµ

{
(λµ− 1)2y − (λ− µ)2x

}
> 0.

If λµ < −1, then

tr(AB) + 2 =
1

(y − x)λµ

{
(λµ+ 1)2y − (λ+ µ)2x

}
< 0.

Thus if λµ > 1(⇔ εAεB = 1), then tr(AB) > 2(⇔ εAB = 1) and if λµ < −1(⇔
εAεB = −1), then tr(AB) < −2(⇔ εAB = −1). Therefore εAεBεAB = 1. �

Theorem 4.9. The Fricke space of a one-holed torus Σ(1, 1) can be identified

with the open subset of R3 such that

(30)
{
(tA, tB, tAB) ∈ (2,∞)3 | fAB < −4

}

where fAB = t2A + t2B + t2AB − tAtBtAB − 4.

Proof. By Proposition 4.8 and the various of lifts from PSL(2,R) to SL(2,R)
in (2), the possible traces of A,B and AB are

F̃1,1
let
= (2,∞)× (2,∞)× (2,∞)

⋃
(−∞,−2)× (2,∞)× (−∞,−2)

⋃
(2,∞)× (−∞,−2)× (−∞,−2)

⋃
(−∞,−2)× (−∞,−2)× (2,∞).

Recall that tr(C) = t2A+ t2B+ t2AB− tAtBtAB−2 = fAB+2. Since the condition
for the discreteness of a holonomy group of Σ(1, 1) is tr(C) < −2, we obtain
the condition fAB = tr(C) − 2 < −4 which is

t2A + t2B + t2AB − tAtBtAB < 0.

Therefore the Fricke space F(Σ(1, 1)) = F̃1,1/H
1(M ;Z/2Z) can be identified

with the open subset of R3 as we claimed. �

4.3. Four-holed sphere Σ(0, 4)

The Fricke space of a four-holed sphere Σ(0, 4) is more complicated than
those of a three-holed sphere Σ(0, 3) and a one-holed torus Σ(1, 1). Suppose
Σ(0, 4) is a 4-holed sphere with boundary components A1, A2, A3, A4 subject
to the relation

(31) A4A3A2A1 = I.

Let

A5 = A−1
1 A−1

2 , A6 = A−1
2 A−1

3 , A7 = A−1
1 A−1

3 , and A8 = A−1
2 A−1

4 ;
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Equivalently we have the relations

(32) A5A2A1 = I, A6A3A2 = I, A7A3A1 = I, and A8A4A2 = I.

The elements A5, A6, A7, A8 correspond to simple loops on Σ(0, 4) which sep-
arate Σ(0, 4) into two 3-holed spheres. Thus A5, A6, A7, A8 called the pants

separating elements of Σ(0, 4). We denote ti = tr(Ai) and tij = tr(AiAj).
Then

(33) t5 = t12 = t34, t6 = t23 = t14, t7 = t13, and t8 = t24

since A5 = (A2A1)
−1

= A4A3, and A6 = (A3A2)
−1

= A1A4.
We will show the SL(2,C)-character variety of a four-holed sphere Σ(0, 4)

is a six-dimensional hypersurface in C7. First we will show the traces t7 = t13
and t8 = t24 are expressed by other six traces.

Proposition 4.10. Let ti and tij be traces of elements of a holonomy group a

four-holed sphere Σ(0, 4) satisfying (31) and (32). Then the following equations

hold.

t13 + t24 = t1t3 + t2t4 − t12t23
let
= β(34)

t13 · t24 =
(
t21 + t22 + t23 + t24

)
+
(
t212 + t223

)
− (t1t2 + t3t4) t12(35)

− (t2t3 + t1t4) t23 + t1t2t3t4 − 4
let
= γ.

Proof. To prove above formulas, we apply Trace Identity (23) repeatedly. From
A7 = A−1

1 A−1
3 = (A4A3A2)A

−1
3 , we get

t13 = tr(A4A3A2A
−1
3 ) = tr(A4)tr(A3A2A

−1
3 )− tr(A−1

4 A3A2A
−1
3 )

= t4t2 − tr(A3A2A1A3A2A
−1
3 ) = t2t4 − tr(A2A1A3A2)

= t2t4 − tr(A2A1)tr(A3A2) + tr(A−1
1 A−1

2 A3A2)

= t2t4 − t12t23 + tr(A−1
1 )tr(A−1

2 A3A2)− tr(A1A
−1
2 A3A2)

= t2t4 − t12t23 + t1t3 − tr(A−1
2 A3A2A1)

= t2t4 − t12t23 + t1t3 − tr(A−1
2 A−1

4 ) = t2t4 − t12t23 + t1t3 − t24.

Since t13 · t24 = tr(A7)tr(A8) = tr(A7A8) + tr(A−1
7 A8), we compute tr(A7A8)

and tr(A−1
7 A8). From A7 = (A3A1)

−1 and A8 = (A4A2)
−1, we have

tr(A7A8) = tr(A−1
8 A−1

7 ) = tr(A4A2A3A1) = tr
(
(A3A2A1)

−1A2A3A1

)

= tr(A−1
1 A−1

2 A−1
3 A2A3A1) = tr(A−1

2 A−1
3 A2A3)

= t22 + t23 + t223 − t2t3t23 − 2

by the commutator equation (25).

tr(A−1
7 A8) = tr(A3A1A

−1
2 A−1

4 ) = tr(A3A1A
−1
2 A3A2A1)

= tr(A3A1A
−1
2 )tr(A3A2A1)− tr(A2A

−1
1 A−1

3 A3A2A1)

= tr(A3A1A
−1
2 )tr(A−1

4 )− tr(A2A
−1
1 A2A1)

=
{
tr(A3)tr(A1A

−1
2 )− tr(A−1

3 A1A
−1
2 )

}
t4 − tr(A2A

−1
1 A2A1)
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=
{
t3(t1t2 − t12)− tr(A−1

2 A−1
3 A1)

}
t4 − tr(A2A

−1
1 A2A1)

=
{
t3(t1t2 − t12)− tr(A−1

2 A−1
3 )tr(A1) + tr(A3A2A1)

}
t4

− tr(A2A
−1
1 )tr(A2A1) + tr(A1A

−1
2 A2A1)

= {t3(t1t2 − t12)− t23t1 + t4} t4 − (t2t1 − t12)t12 + (t21 − 2)

= t1t2t3t4 − t3t4t12 − t1t4t23 + t24 − t1t2t12 + t212 + t21 − 2.

Therefore we obtain t13 · t24 = tr(A7A8) + tr(A−1
7 A8) =

(
t21 + t22 + t23 + t24

)
+(

t212 + t223
)
− (t1t2 + t3t4) t12 − (t2t3 + t1t4) t23 + t1t2t3t4 − 4. �

Above Proposition 4.10 implies that the traces t13 and t24 are roots of the
quadratic equation

z2 − βz + γ = 0

where the coefficients β and γ are from (34) and (35). Thus we have

t13, t24 =
β ±

√
β2 − 4γ

2
.

But we do not know t13 is
β+

√
β2

−4γ

2 or
β−

√
β2

−4γ

2 , because it is possible to
happen all three cases t13 < t24, t13 = t24, and t13 > t24.

From Equations (34) and (35), we can remove t24. Since

t24 = t1t3 + t2t4 − t12t23 − t13,

we obtain

t13 (t1t3 + t2t4 − t12t23 − t13) =
(
t21 + t22 + t23 + t24

)
+
(
t212 + t223

)

− (t1t2 + t3t4) t12 − (t2t3 + t1t4) t23 + t1t2t3t4 − 4.

Therefore the SL(2,C)-character variety of a four-holed sphere Σ(0, 4) is the
hypersurface in C7 satisfying

(
t21 + t22 + t23 + t24

)
+
(
t212 + t223 + t213

)
+ t12t23t13 + t1t2t3t4 − 4(36)

− (t1t2 + t3t4) t12 − (t2t3 + t1t4) t23 − (t1t3 + t2t4) t13 = 0

for (t1, t2, t3, t4, t12, t23, t13) ∈ C7.

Suppose a four-holed sphere Σ(0, 4) is equipped with a hyperbolic structure.
Then a holonomy group with redundant relations

Γ = 〈A1, A2, A3, A4, A5, A6 | A4A3A2A1 = I, A5A2A1 = I, A6A3A2 = I 〉
of Σ(0, 4) is discrete if and only if the axes of A1, A2, A3, A4, A5, A6 are located
as in Figure 3 up to conjugation.

Theorem 4.11. Suppose A1, A2, A3, A4, A5, A6 ∈ SL(2,R) are hyperbolic ele-

ments such that A4A3A2A1 = I, A5A2A1 = I, and A6A3A2 = I. Let ξj be the

involution corresponding to Aj and εj = sgn(tr(Aj)). Then

〈ξ1, ξ2〉 > 1, 〈ξ1, ξ3〉 > 1, 〈ξ1, ξ4〉 > 1, 〈ξ1, ξ5〉 > 1, 〈ξ1, ξ6〉 < −1,
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〈ξ2, ξ3〉 > 1, 〈ξ2, ξ4〉 > 1, 〈ξ2, ξ5〉 > 1, 〈ξ2, ξ6〉 > 1,

〈ξ3, ξ4〉 > 1, 〈ξ3, ξ5〉 < −1, 〈ξ3, ξ6〉 > 1,

〈ξ4, ξ5〉 < −1, 〈ξ4, ξ6〉 < −1,

〈ξ5, ξ6〉 ∈ (−1, 1)

if and only if

ε1ε2ε3ε4 = 1, ε1ε2ε5 = −1, ε2ε3ε6 = −1,

f56 = t25 + t26 + t256 − t5t6t56 − 4 < 0.

A1

A2

A3
A4

A5

A6

0 x2 y2y3x3

Figure 3. The locations of axes A1, A2, A3, A4, A5, A6 with
A4A3A2A1 = I, A5A2A1 = I and A6A3A2 = I.

Proof. Notice that

A4A3A
−1
5 = A4A3A2A1 = I, and A1A4A

−1
6 = A1A4A3A2 = I.

And we know 〈ξ5, ξ6〉 ∈ (−1, 1) is equivalent to f56 < 0 by Corollary 3.11-(3).
(⇒) By Theorem 4.1 we have ε1ε2ε5 = −1 and ε2ε3ε6 = −1 since A5A2A1 =

I, 〈ξ1, ξ2〉 > 1, 〈ξ2, ξ5〉 > 1, 〈ξ1, ξ5〉 > 1 and A6A3A2 = I, 〈ξ2, ξ3〉 > 1, 〈ξ2, ξ6〉 >
1, 〈ξ3, ξ6〉 > 1 respectively. From A4A3A

−1
5 = I and ξA−1 = −ξA, we derive

〈ξ3, ξ4〉 > 1, 〈ξ3,−ξ5〉 > 1 and 〈ξ4,−ξ5〉 > 1. Thus ε5ε3ε4 = −1. Therefore
ε1ε2ε3ε4 = (ε1ε2ε5)(ε5ε3ε4) = (−1)2 = 1.

(⇐) Since ε1ε2ε3ε4 = 1, ε1ε2ε5 = −1, ε2ε3ε6 = −1, and ε2i = 1, we induce
ε5ε3ε4 = −1 and ε6ε4ε1 = −1. Since A4A3A

−1
5 = I, A5A2A1 = I, A1A4A

−1
6 =

I, A6A3A2 = I and f56 < 0, we obtain every inequalities except 〈ξ1, ξ3〉 > 1
and 〈ξ2, ξ4〉 > 1. We claim that if 〈ξ1, ξ5〉 > 1, 〈ξ2, ξ3〉 > 1 and 〈ξ3, ξ5〉 < −1,
then 〈ξ1, ξ3〉 > 1. Without loss of generality, we assume the axis ℓ1 of A1 is
contained the half-plane Hℓ5 of A5. If the axis ℓ3 is contained in Hℓ5 , then
it contradicts for the axes ℓ2 and ℓ3 are the same direction. Thus the axis
ℓ3 should be contained in Hc

ℓ5
. Since 〈ξ1, ξ5〉 > 1 and 〈ξ3, ξ5〉 < −1, we have

〈ξ1, ξ3〉 > 1 (i.e., ℓ1 and ℓ3 are separated the same direction) by Theorem 3.8(1)
and (2). Similarly we can show 〈ξ2, ξ4〉 > 1. �
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Since f56 < 0 is one of the conditions for the discreteness for a holonomy
group of Σ(0, 4), we need to know about f56 = t25+ t26+ t256− t5t6t56− 4. Recall
t5 = t12 and t6 = t23. First we calculate t56.

t56 = tr(A5A6) = tr(A−1
6 A−1

5 ) = tr(A3A2A2A1)

= tr(A2A2A1A3) = tr(A2)tr(A2A1A3)− tr(A−1
2 A2A1A3)

= t2tr(A3A2A1)− tr(A1A3) = t2tr(A
−1
4 )− t13 = t2t4 − t13.

Thus

f56 = t212 + t223 + (t2t4 − t13)
2 − t12t23(t2t4 − t13)− 4

= t212 + t223 + t22t
4
4 − 2t2t4t13 + t213 − t2t4t12t23 + t12t23t13 − 4

= (t212 + t223 + t213 + t12t23t13 − 4) + t22t
4
4 − 2t2t4t13 − t2t4t12t23.(37)

Hence we need the trace t13 to express the Fricke space of a four-holed sphere.

Theorem 4.12. The Fricke space of a four-holed sphere Σ(0, 4) can be iden-

tified with the hypersurface of R7 such that

(38)
{
(t1, t2, t3, t4, t12, t23, t13) ∈ (−∞,−2)7 | h0,4 = 0, f56 < 0

}

where

h0,4 =
(
t21 + t22 + t23 + t24

)
+
(
t212 + t223 + t213

)
+ t12t23t13 + t1t2t3t4 − 4(39)

− (t1t2 + t3t4) t12 − (t2t3 + t1t4) t23 − (t1t3 + t2t4) t13,

f56 = (t212 + t223 + t213 + t12t23t13 − 4) + t22t
4
4 − 2t2t4t13 − t2t4t12t23.(40)

Proof. Since the fundamental group of M = Σ(0, 4) is a free group of rank 3,
H1(M ;Z/2Z) ∼= Hom(π1(M),Z/2Z) is isomorphic to Z/2Z ⊕ Z/2Z ⊕ Z/2Z.
Thus if {A1, A2, A3, A4} is a lifted SL(2,C)-representation of Σ(0, 4), then

{A1, A2,−A3,−A4}, {A1,−A2, A3,−A4}, {A1,−A2,−A3, A4},
{−A1, A2, A3,−A4}, {−A1, A2,−A3, A4}, {−A1,−A2, A3, A4},
and {−A1,−A2,−A3,−A4}

are other liftable SL(2,C)-representations. By Theorem 4.11, the signs of ele-
ments of a discrete holonomy group Γ of Σ(0, 4) satisfy relations

ε1ε2ε3ε4 = 1, ε1ε2ε5 = ε1ε2ε12 = −1, and ε2ε3ε6 = ε2ε3ε23 = −1.

And the discreteness of Γ ensures a pants separating element A7 = A−1
1 A−1

3

induces another relation

ε1ε3ε7 = ε1ε3ε13 = −1.

Thus the possible signs (ε1, ε2, ε3, ε4, ε12, ε23, ε13) of traces are

(+,+,+,+,−,−,−), (+,+,−,−,−,+,+), (+,−,+,−,+,+,−),

(+,−,−,+,+,−,+), (−,+,+,−,+,−,+), (−,+,−,+,+,+,−),

(−,−,+,+,−,+,+), and (−,−,−,−,−,−,−).
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By the quotient action ofH1(M ;Z/2Z) ∼= Z/2Z⊕Z/2Z⊕Z/2Z, the Fricke space
F(Σ(0, 4)) can be considered as a subset of (−∞,−2)7. Since the SL(2,C)-
character variety of Σ(0, 4) satisfies Equation (36) which is h0,4 = 0 and the
discreteness of Γ requires the condition f56 < 0, the Fricke space F(Σ(0, 4)) is
identified with the six-dimensional hypersurface of R7 as we claimed. �
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