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FRIEDMAN-WEIERMANN STYLE INDEPENDENCE

RESULTS BEYOND PEANO ARITHMETIC

Gyesik Lee

Abstract. We expose a pattern for establishing Friedman-Weiermann
style independence results according to which there are thresholds of prov-
ability of some parameterized variants of well-partial-ordering. For this
purpose, we investigate an ordinal notation system for ϑΩω , the small Ve-
blen ordinal, which is the proof-theoretic ordinal of the theory (Π1

2-BI)0.
We also show that it sometimes suffices to prove the independence w.r.t.
PA in order to obtain the same kind of independence results w.r.t. a
stronger theory such as (Π1

2-BI)0.

1. Introduction

We start with a short historical background of Kruskal’s theorem to explain
the motivation for this work. Kruskal’s theorem [6] states that the set of
finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered
with respect to the tree homeomorphic embedding: For any infinite sequence
T0, T1, . . . of finite trees, there are i, j such that i < j and Ti embeds into Tj.

Friedman [16] showed the independence of Kruskal’s theorem with respect
to ATR0 by constructing a surjective, order-preserving mapping from the set
of all finite trees to Γ0, the Feferman-Schütte ordinal. He also defined a finite
form of Kruskal’s theorem which is a Π0

2 sentence, but still remains unprov-
able in ATR0. The exact proof-theoretic strength of Kruskal’s theorem was
established by Rathjen and Weiermann [13]. They showed that ACA0 plus
Kruskal’s theorem is as strong as (Π1

2-BI)0 whose proof-theoretic ordinal is the
small Veblen ordinal. Weiermann [20] later used a parametrized variant of
Friedman’s finite form of Kruskal’s theorem to show that there is a threshold
of the PA-provability depending on the parameter.

This brief history raises a question whether there is a similar threshold of
provability of the Friedman-Weiermann style finite form of Kruskal’s theorem
with respect to ATR0 or even to (Π1

2-BI)0. The answer to this question is
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surprisingly simple. Indeed, we will show that it is not necessary to go be-
yond Peano arithmetic even when we want to get Friedman-Weiermann style
independence results with respect to a stronger theory such as (Π1

2-BI)0.
Another contribution of this paper is to expose a pattern for establishing

Friedman-Weiermann style independent results. We consider, as an example,
the well-foundedness of the small Veblen ordinal ϑΩω which can be character-
ized by the fixed point free Veblen functions ([19, 14]).

Outline of the paper. Section 2 shows that there are thresholds of the provabil-
ity of Friedman-Weiermann style finite form of Kruskal’s theorem with respect
to (Π1

2-BI)0. In Section 3, an ordinal notation system for ϑΩω is used to obtain
a Friedman-Weiermann style independence result. We conclude in Section 4.
Regarding the technical details the reader is referred to Appendix A to focus
on the main ideas of the paper.

Notational conventions. The small Latin letters i, ℓ,m, n, . . . range over natural
numbers while the Greek letters α, β, . . . range over ordinals or finite trees. log
is the logarithm to base 2. Note that ⌈ log(n+ 1) ⌉ is the length of the binary
representation of the natural number n. For convenience, we set log 0 = 0.

2. Independence results of the finite form of Kruskal’s theorem

We start with an introduction to the basic concepts related to Friedman-
Weiermann style finite forms of well-partial-orderedness and generalize slightly
Weiermann’s Theorem 4.9 in [20].

2.1. Well-partial-ordering

A well-partial-ordering (wpo) is a partial ordering (X,�) such that there is
no infinite bad sequence: A sequence 〈xi〉i∈ω is called bad if xi 6� xj for all
i < j. (X,≺) is called a well-ordering if (X,�) is a linear wpo.

The order type of a well-ordering (X,≺), otyp(≺), is the least ordinal for
which there is an order-preserving function f : X → α:

otyp(≺) := min{α : there is an order-preserving function f : X → α}.
Given a wpo, (X,�) its maximal order type is defined by

o(X,�) := sup{otyp(≺+) : ≺+ is a well-ordering on X extending �}.
We write o(X) for o(X,�) if it causes no confusion. De Jongh and Parikh [3]
showed that the supremum is indeed reachable: If (X,�) is a wpo, then there
is a well-ordering ≺+ on X extending � such that o(X) = otyp(≺+).

2.2. Friedman-Weiermann style finite forms

Let T be a subsystem of the second order Peano arithmetic and 〈B,≤〉 a
primitive recursive ordinal notation system1 of the proof-theoretic ordinal of

1That is, the set B and the relation ≤ can be encoded into primitive recursive sets of
natural numbers. Smith [17] used a more general concept, i.e., reasonable ordinal notation
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T. Assume there is a norm function ‖ · ‖B : B → N such that for any n ∈ N,
the set {β ∈ B: ‖β‖B ≤ n} is finite. Assume further that this norm function
is provably recursive in PA and that there is an elementary recursive function
of n bounding card({β ∈ B: ‖β‖B ≤ n}) for every n ∈ N.

Let WO(B) assert that 〈B,≤〉 is well-ordered. For each β ∈ B, WO(β) states
that B contains no infinite descending sequence beginning with β. Note that
WO(B) is a Π1

1-sentence and not provable in T. Friedman translated this Π1
1-

sentence into a Π0
2-sentence which still remains unprovable in T. The following

definition is Friedman-Weiermann style finite form of slowly-well-orderedness.

Definition (Friedman [16], Smith [17], Weiermann [20]). Given a function
f : N → N, the f -slowly-well-orderedness of (B,≤), SWO(B,≤, f), denotes the
following Π0

2 sentence:

For any k there exists an n such that for any finite sequence
β0, . . . , βn from B satisfying the condition that ‖βi‖B ≤ k+f(i)
for any i ≤ n there are indices ℓ,m such that ℓ < m ≤ n and
βℓ ≤ βm.

Now let (Q,�) be a primitive recursive well-partial-ordering based on a norm
function ‖ · ‖Q : Q→ N. Assume its maximal order type is the proof-theoretic
ordinal of T. The f -slowly-well-partial-orderedness of Q, SWP(Q,�, f), is
defined similarly using � and ‖·‖Q. Note that SWO(B,≤, f) and SWP(Q,�, f)
are true for any function f : N → N because of the well-foundedness. However,
Friedman and Smith showed that they are not provable in T when f is the
identity function:

Theorem 2.1 (Friedman [16], Smith [17]). In ACA0, the following are equival-
ent:

(1) SWO(B,≤, id),
(2) SWP(Q,�, id),
(3) 1-consistency of T(i.e., T proves only true Π0

1-sentence), and
(4) Π0

2-soundness of ACA0+ {WO(β) : β ∈ B}(i.e., ACA0+ {WO(β) : β ∈
B} proves only true Π0

2-sentence).

Corollary 2.2 (Friedman [16], Smith [17]). SWO(B,≤, id) and SWP(Q,�, id)
are T-independent.

2.3. Finite form of Kruskal’s theorem

A finite (rooted) tree is a finite partial ordering (T,�) such that, if T is not
empty, T has a smallest element called the root of T , and for each b ∈ T , the
set {a ∈ T : a � b} is totally ordered.

Let a∧ b denote the infimum of a and b for a, b ∈ T . Given finite rooted trees
T1 and T2, a homeomorphic embedding of T1 into T2 is a one-to-one mapping

systems. Here we just need to know that all the well-known notation systems in proof theory
are reasonable.
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f : T1 → T2 such that f(a∧ b) = f(a)∧ f(b) for all a, b ∈ T1. We write T1 ET2
if there exists a homeomorphic embedding f : T1 → T2.

Theorem 2.3 (Kruskal’s theorem [6]). For any infinite sequence of finite rooted
trees (Tk)k<ω, there are indices ℓ < m satisfying Tℓ E Tm.

Theorem 2.4 (Friedman [16]). Kruskal’s theorem is ATR0-independent.

Rathjen and Weiermann showed the exact strength of Kruskal’s theorem:

Theorem 2.5 (Rathjen andWeiermann [13]). (1) In ACA0, Kruskal’s theorem
and the well-foundedness of the small Veblen ordinal ϑΩω are equivalent.

(2) The proof-theoretic ordinal of (Π1
2-BI)0 is ϑΩω.

Let ‖T ‖ denote the number of nodes of the finite tree T . Consider

SWP(T,E, f)

where T is the set of all finite rooted trees.

Theorem 2.6 (Friedman [16], Smith [17]). SWP(T,E, id) is independent of
ATR0.

Weiermann used the so-called Otter’s tree constant2 α = 2.955765 . . . to
characterize the PA-independence of SWP(T,E, f).

Theorem 2.7 (Weiermann [20]). Let c = 1
log(α) and r be a primitive recursive

real number. Set fr(i) := r · log i. Then SWP(T,E, fr) is PA-independent if
and only if r > c.

2.4. Independence beyond PA

As mentioned before, Weiermann’s independence results are based on prov-
ability in PA while Theorem 2.6 indicates the independence beyond PA. Here
we show that Weiermann’s threshold results still hold with respect to (Π1

2-BI)0.
Interestingly, the answer is already hidden in Weiermann’s proofs.

Theorem 2.8. Let c, r and fr be as above.

(1) SWP(T,E, id) is (Π1
2-BI)0-independent.

(2) SWP(T,E, fr) is (Π1
2-BI)0-independent if and only if r > c .

Proof. The first claim is a direct consequence of Theorem 2.1 and Theorem 2.5.
The second one follows directly from Theorem 2.1 and the first assertion

because Weiermann’s proof of Theorem 2.7 shows in fact that, in ACA0, if
r > c then the provability of SWP(T,E, fr) implies that of SWP(T,E, id): Let
Fr be the Skolem function of SWP(T,E, fr) and Fid that of SWP(T,E, id).
Then Weiermann showed that Fr(k) grows eventually faster than Fid(⌊ k/3 ⌋),
i.e., there is some K such that Fr(k) ≥ Fid(⌊ k/3 ⌋) holds for any k ≥ K. �

2Otter’s tree constant α satisfies tn ∼ β · αn · n− 2
3 for some real number β, where

tn = card({T : ‖T‖ = n}) (Otter [11]). The notation ∼ stands for asymptotic equality.
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3. Independence results on the small Veblen ordinal ϑΩω

In this section, we introduce a symbolic notation system (S,≺) for the small
Veblen ordinal ϑΩω and show that there is a threshold of the provability of the
Friedman-Weiermann style finite form of well-orderedness with respect to the
well-orderedness of (S,≺).

3.1. A notation system for ϑΩω

Given a sequence of ordinals ᾱ = α1, . . . , αk, we recursively define the branch
ϕᾱ : ON → ON of the Veblen function. Here ON stands for the class of all
ordinals. We also write ϕ(ᾱ, β) instead of ϕᾱ(β).

(i) ϕ0̄ enumerates the (additive) principal ordinals, i.e., ϕ0̄(α) = ωα.
(ii) ᾱ = α0, . . . , αi, 0̄ with αi > 0 and i ≤ k: ϕᾱ is the enumerating function

of the proper class

{β : (∀γ < αi)(ϕ(α0, . . . , αi−1, γ, β, 0̄) = β)} .
Obviously ϕ0̄,ᾱ = ϕᾱ holds, so we can say that they have the same arity: ϕᾱ is

of arity k+1 when k is the length of β̄ where ᾱ = 0̄, β̄ and β̄ has no leading 0̄.
The ϕ function lacks the subterm property since it admits fixed points. For

instance, the epsilon numbers εν are fixed points of ϕ0, and ϕ1 enumerate the
epsilon numbers. Therefore we concentrate on the fixed point free version ψ of
ϕ:

(i) ψ(α0, . . . , αk, β) := ϕ(ᾱ, β + 1) if β = β0 + n for some n ∈ N and β0 ∈
Lim ∪ {0} and ϕ(ᾱ, β) ∈ {α0, . . . , αk, β};

(ii) ψ(ᾱ, β) := ϕ(ᾱ, β), otherwise.

Here Lim is the class of all limit ordinals. The following fact is well known
([19, 14, 1, 9]):

For every α < ϑΩω, there is a unique representation solely
built up from 0, +, ω and the (j + 2)-ary ψ for every j ∈ N.

We use this fact to construct a symbolic notation system for ϑΩω. Assume
there are a constant symbol o and a (j + 1)-ary function symbols fj for each
j ∈ N. Then we simultaneously define sets S, P, M as follows:

(i) o ∈ S,
(ii) if α0, . . . , αj ∈ S, then fjα0 · · ·αj ∈ P ⊆ S,
(iii) if α0, . . . , αm+1 ∈ P , then [α0, . . . , αm+1] ∈M ⊆ S,

where m ∈ N. Note that P and M are subsets of S.
The intended meaning of each symbol is obvious. o, f0 and fj+1 corresponds

respectively to 0, ω and the (j +2)-ary ψ. Moreover, [α0, . . . , αm+1] stands for
α0# · · ·#αm+1, where # is the natural sum of ordinals. Given α, β ∈ S, we
write α ≺ β if α < β is true when they are considered as the ordinals which
they represent. Then the notation system (S,≺) can be seen as a primitive
recursive notation system.
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Lemma 3.1. The relation ≺ is a primitive recursive well-ordering on S and
otyp(S) = ϑΩω.

The above lemma is based on the following fact ([9]).

Lemma 3.2. Let α0, . . . , αk+1 and γ0, . . . , γk+1 be given.

(1) Then function ψ is monotone and has the subterm property, i.e., for
all ᾱ = α0, . . . , αk+1 and all i ≤ k + 1 we have ψ(ᾱ) > αi.

(2) ψ(ᾱ) > ψ(γ̄) is equivalent to

(ᾱ >lex γ̄ ∧ ψ(α) > γ0, . . . , γk+1) ∨ ∃i < (k + 2)(αi ≥ ψ(γ̄)) .

<lex denotes the lexicographic ordering of ordinals of the same length.

3.2. Slowly-well-orderedness of (S,≺)

To define the slowly-well-orderedness of (S,≺) we use ‖·‖ defined as follows:

(i) ‖o‖ := 0;
(ii) ‖fjα0 · · ·αj‖ := 1 + j + ‖α0‖+ · · ·+ ‖αj‖;
(iii) ‖[α0, . . . , αm+1]‖ := ‖α0‖+ · · ·+ ‖αm+1‖.
Then ‖ · ‖ is a norm because ‖α‖ > 0 for any α ∈ P .

Consider now SWO(S,�, f) based on the norm ‖ · ‖. Let Ff be the Skolem
function of SWO(S,�, f), i.e., Ff (k) is the least n such that, for any finite
sequence α0, . . . , αn from S with ‖αi‖ ≤ k + f(i) for all i ≤ n, there exist ℓ,m
such that ℓ < m ≤ n and αℓ � αm. Then by König’s Lemma, Ff is a total
function for any function f . Moreover, the following holds by Theorem 2.1.

Lemma 3.3. SWO(S,�, id) is (Π1
2-BI)0-independent.

In particular, Fid is not provably total in (Π1
2-BI)0. In the following we shall

see that there is a threshold for the provability of SWO(S,�, f) with respect
to (Π1

2-BI)0. That is, the main theorem of the paper is the following where
fr(i) := r · log i.
Theorem 3.4. There exists a real number r0 such that the following hold for
any primitive recursive real number r:

SWO(S,�, fr) is (Π1
2-BI)0-independent iff r > r0 .

That is, Fr := Ffr is provably total in (Π1
2-BI)0 if and only if r ≤ r0.

Remark 3.5. Whether r0 itself is a primitive recursive real number is unknown.
Unfortunately we show just the existence of such a real number r0. Its exact
computation is left as a future work.

3.3. Proof of the main theorem

In order to prove the main theorem we need to provide a real number r0.
Note that, for Theorem 2.7, Weiermann used Otter’s tree constant α satisfying
tℓ ∼ β · αℓ · ℓ−2/3 where tℓ = card({T : ‖T ‖ = ℓ}). We will use the same idea.
Indeed, we will see that r0 := 1

log(ρ−1) satisfies the desired property where ρ
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comes from an analysis of the asymptotic behavior of sℓ := card({α ∈ S : ‖α‖ =
ℓ}):

sℓ ∼ C · ρ−ℓ · ℓ−3/2

where C is a positive real number.
In order to characterize properties of r0 it is also necessary to define a cu-

mulative hierarchies (Sd)d, (P
d)d, (M

d)d as follows. Given d ∈ N, we simulta-
neously define Sd, P d, and Md as follows:

(i) o ∈ Sd;
(ii) if j ≤ d and α0, . . . , αj ∈ Sd, then fjα0 · · ·αj ∈ P d ⊆ Sd;
(iii) if α0, . . . , αm+1 ∈ P d, then [α0, . . . , αm+1] ∈Md ⊆ Sd.

Then S =
⋃

d S
d, P =

⋃

d P
d and M =

⋃

dM
d.

The next step is to analyze the asymptotic behavior of

Sℓ := {α ∈ S : ‖α‖ = ℓ} and Sd
ℓ := {α ∈ Sd : ‖α‖ = ℓ}.

S≤ℓ, S
d
≤ℓ, Mℓ, M

d
ℓ , Pℓ, P

d
ℓ , etc. can also be similarly defined. Indeed, if we

let sℓ := card(Sℓ) and sdℓ := card(Sd
ℓ ), then we can show that the following

theorem holds.

Theorem 3.6. There are real numbers ρ, ρd ∈ (0, 1), where d ≥ 1, such that
the following hold.

(1) sℓ ∼ C · ρ−ℓ · ℓ−3/2 for a real number C > 0.

(2) sdℓ ∼ Cd · ρ−ℓ
d · ℓ−3/2 for a real number Cd > 0.

(3) The sequence (ρd)d≥1 is weakly decreasing and converges to ρ.

Proof. A detailed proof is very technical and not really related to logic, hence
deferred to TheoremA.8. Here we just mention that it is necessary to study
the generating functions S(z), Sd(z) defined as follows:

S(z) =

∞
∑

ℓ=0

sℓ · zℓ and Sd(z) =

∞
∑

ℓ=0

sdℓ · zℓ.

See Appendix A for more detail. �

Using Theorem 3.6, we can prove the main goal Theorem 3.4. Let r0 :=
1

log(ρ−1) and fr(i) := r · log i. Recall that Ff is the Skolem function of SWO(S,

�, f). We also write Fr := Ffr . We start with the provable part, then show
the independence with respect to (Π1

2-BI)0.

The provable part

Assume r ≤ r0. Note first that, by Cauchy’s formula for the product of two
power series, we have

∞
∑

ℓ=0

s≤ℓ · zℓ =
1

1− z
· S(z).
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Then by Theorem A.4 and Theorem 3.6, there is a D such that

s≤i <
η

η − 1
· 11
10

· C · ηi · i−3/2

for all i ≥ D, where η := ρ−1. Note that ηr0 = 2. Let k > 2 be given. We
claim that the number n defined below provides an upper bound for the length
of a sequence which is strictly decreasing with the desired norm condition:

N := N(k) := 2L
k+D

,

where L := ⌈ η
η−1 · 1110 ·C ⌉ ·m0 ·(n0+1), n0 := ⌊ η ⌋, and m0 := ⌈ log(η) ⌉+1 > 2.

Assume to the contrary that there is a strictly decreasing sequence α0, . . .,
αN from S such that ‖αi‖ ≤ k + r0 · log i for all i ≤ N . Then

‖αi‖ ≤ k + r0 · logN = k + r0 · (Lk+D) =: i0.

Note that i0 ≥ D because L ≥ max{2, r0} and k > 2. Then a contradiction
follows:

N ≤ s≤ i0

<
η

η − 1
· 11
10

· C · ηk+r0·L
k+D

(k + r0 · Lk+D)3/2

<
η

η − 1
· 11
10

· C · η
k · (ηr0)Lk+D

(r0 · Lk+D)3/2

<
η

η − 1
· 11
10

· C · m
3/2
0 · ηk · 2Lk+D

L(k+D)·3/2

<
η

η − 1
· 11
10

· C · (m0 · (n0 + 1))k

Lk+D
· 2Lk+D

< 2L
k+D

= N .
�

Independence with respect to (Π1

2
-BI)0

Let r > r0 be fixed in the rest of this section. We claim that Fr is not
provably recursive in (Π1

2-BI)0, which implies that (Π1
2-BI)0 does not prove

SWO(S,�, fr).
Let N be a fixed natural number such that N > 1 + r0. We prove claim by

showing the following two facts:

(1) FN (k) grows eventually faster3 than Fid(⌊ k/2 ⌋).
(2) Fr(k) grows eventually faster than FN (⌊ k/2 ⌋).

Then Fr cannot be provably recursive in (Π1
2-BI)0 because Fid is not provably

recursive in (Π1
2-BI)0 by Theorem 3.3.

3A function f grows eventually faster than a function g when there is some K such that
f(k) ≥ g(k) for all k ≥ K.
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Proof of (1). Let ηi := ρ−1
i and η := ρ−1. Then ηi ≤ ηi+1 ≤ η and limi→∞ ηi =

η. Since N > 1 + r0 there is a rational number r′ > r0 such that N > 1 + r′.
Choose d such that r′ > 1/ log ηd. By Theorem 3.6 there is a natural number
E such that

(3.1) sdi ≥ 9

10
· Cd · ηid · i−3/2

for all i ≥ E. Choose also a natural number D > d+1 such that the following
hold for any i ≥ D:

E ≤ ⌊ r′ · ⌈ log(i+ 1) ⌉ ⌋ ,(3.2)

2⌈ log(i+1) ⌉ ≤ 9

10
· Cd · 2⌊ r

′·⌈ log(i+1) ⌉ ⌋ · log(ηd) · (⌊ r′ · ⌈ log(i+ 1) ⌉ ⌋)−3/2.(3.3)

Let k be given. We may assume w.l.o.g. that

k0 := ⌊ k/2 ⌋ ≥ D and k0 + d+D + 6 + r′ ≤ k.

Set

Bi := {α ∈ Sd : ‖α‖ ≤ ⌊ r′ · ⌈ log(i+ 1) ⌉ ⌋}
and let µi be the enumeration function of Bi with respect to the total ordering
≺. Then α ≺ fd+10̄ for any α ∈ Bi.

Recall that the Skolem function Fid for SWO(S,�, id) is not provably re-
cursive in (Π1

2-BI)0 by Lemma 3.3. Let n := Fid(k0) − 1 and β0, . . . , βn−1 be
a strictly decreasing sequence from S such that ‖βi‖ ≤ k0 + i for any i < n.
Then βi ≺ fk0

0̄ holds for all i < n because ‖β0‖ ≤ k0 . Define a new sequence
as follows.

αi :=

{

fk0+D−i 0̄ if i ≤ D,

f1(fd+1 β⌈ log(i+1) ⌉ 0̄)µi(2
⌈ log(i+1) ⌉ − i) if D < i ≤ n.

(αi)i≤n is well-defined because the following holds for all i > D:

card(Bi) ≥ sd⌊ r′·⌈ log(i+1) ⌉ ⌋

≥ 9

10
· Cd · η⌊ r

′·⌈ log(i+1) ⌉ ⌋
d · (⌊ r′ · ⌈ log(i+ 1) ⌉ ⌋)−3/2 by (3.1)

≥ 2⌈ log(i+1) ⌉ by (3.3)

Because ⌈ log(i + 1) ⌉ ≤ 2 + log i and log(i+ 1) ≤ 1 + log i hold we also have

‖αi‖ ≤ max{k0 +D − i+ 1, 2 + d+ 2 + ‖β⌈ log(i+1) ⌉‖+ r′ · log(i+ 1)}
≤ max{k0 +D − i+ 1, 6 + d+ k0 + r′ + (1 + r′) · log i}
< k +N · log i.

Using Lemma 3.2, we also show that the sequence (αi)i≤n is strictly decreasing,
which implies that FN (k) ≥ Fid(⌊ k/2 ⌋).

First case: ℓ < m < D. Then αℓ = fk0+D−ℓ 0̄ ≻ fk0+D−m 0̄ = αm.
Second case: ℓ < D ≤ m. Then fk0+D−ℓ 0̄ � fk0

0̄ ≻ fd+1 β⌈ log(m+1) ⌉ 0̄,
hence αℓ ≻ αm.
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Third case: D ≤ ℓ < m ≤ n. Then there are two subcases.

(i) ⌈ log(ℓ + 1) ⌉ < ⌈ log(m + 1) ⌉: fd+1 β⌈ log(ℓ+1) ⌉ 0̄ ≻ fd+1 β⌈ log(m+1) ⌉ 0̄

and fd+1 β⌈ log(ℓ+1) ⌉ 0̄ ≻ fd+1 0̄ ≻ µm(2⌈ log(m+1) ⌉ − m), since we have

γ ≺ fd+1 0̄ for all γ ∈ Sd. Therefore the claim follows.

(ii) ⌈ log(ℓ+1) ⌉ = ⌈ log(m+1) ⌉: µℓ(2
⌈ log(ℓ+1) ⌉ − ℓ) ≻ µm(2⌈ log(m+1) ⌉ −m).

Therefore the claim follows. �

Proof of (2). Choose a rational number r′′ and a natural number d such that
r > r′′ > 1/ log ηd. By Theorem 3.6 there is a natural number E so large that

(3.4) sdi ≥ 9

10
· Cd · ηid · i−3/2

for all i ≥ E. Let D > d+1 be so large that the following inequalities hold for
any i ≥ D:

E ≤ ⌊ r′′ · ⌈ log(i + 1) ⌉ ⌋ ,(3.5)

2⌈ log(i+1) ⌉ ≤ 9

10
· 2⌊ r′′·⌈ log(i+1) ⌉ ⌋ · log(ηd) · Cd · (⌊ r′′ ⌈ log(i+ 1) ⌉ ⌋)−3/2,(3.6)

r · log i > r′′ · log i+N · log(⌈ log(i+ 1) ⌉).(3.7)

Assume k is given. We may also assume that k0 := ⌊ k/2 ⌋ ≥ D and k0 + d +
D+ 4+ r′′ ≤ k. Let n := FN (k0)− 1 and β0, . . . , βn−1 be a strictly decreasing
sequence from S such that ‖βi‖ ≤ k0 + N · log i for all i < n. Then, for all
i < n, βi ≺ fk0

0̄ holds since ‖β0‖ ≤ k0.
Set

Bi := {α ∈ Sd : ‖α‖ ≤ ⌊ r′′ · ⌈ log(i + 1) ⌉ ⌋}
and let µi be the enumeration function of Bi with respect to the total ordering
≺. Define a new sequence αi of length n as above (by using r′′ instead of r′).
Then

‖αi‖ ≤ max{k0 +D − i + 1, 2 + d+ 2 + ‖β⌈ log(i+1) ⌉‖+ r′′ · (log i+ 1)}
≤ k0 + d+D + 4 + r′′ +N · log(⌈ log(i+ 1) ⌉) + r′′ · log i
< k + r · log i.

As before in the first step, one can show that (αi)i≤n is strictly decreasing.
This implies Fr(k) ≥ FN (⌊ k/2 ⌋). �

4. Conclusion

We demonstrated a canonical way to achieve Friedman-Weiermann style
independence results concerning the proof-theoretic strength of Kruskal’s the-
orem. More concretely, we showed the following:

Firstly, we showed that it is sometimes enough to prove the independence
with respect to the first-order Peano arithmetic PA even if stronger theories
such as (Π1

2-BI)0 are involved.
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Secondly, we used a notation system for (Π1
2-BI)0 to find the threshold of

provability of the Friedman-Weiermann style finite form of well-orderedness.
We remark that the threshold of Friedman-Weiermann style finite forms de-

pends on the notation system and even on the choice of a norm function, see
also Lee [8]. The choice of a different norm on the labelled trees can lead to
a different generating function for Tk: Let T be a finite tree with marks from
k and define ‖T ‖ = the number of nodes + the total sum of marks in T . Then

Tk(z) =
∑k

ℓ=1 z
ℓ · M(Tk(z)), and we observe a different behavior of indepen-

dence results since the r.o.c. is different.
It would be interesting to investigate the behavior of the thresholds of prov-

able independence results with respect to varying norms. Note however that
there might be a canonical way to analyze phase transitions as demonstrated
by Pelupessy [12].

Another work to be done is the exact or asymptotic computation of the
threshold point. This probably requires a deeper understanding of the relevant
parts of analytic number theory.
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Appendix A. Proof of Theorem 3.6

In this appendix we prove Theorem 3.6. We assume that the reader has very
little knowledge of combinatorics and asymptotic analysis and start with the
introduction of basic concepts. Interested readers can consult Segdewick and
Flajolet [15] or Graham, Knuth and Patashnik [4].

Classes of combinatorial structures are defined, either iteratively or recur-
sively, in terms of simpler classes. A class of combinatorial structures is a pair
(A, ‖ · ‖A) where A is at most denumerable and ‖ · ‖A : A → N is a norm
function. We simply write ‖ · ‖ when it causes no confusion. Given a class of
combinatorial structures (A, ‖ · ‖), we also define An := {α ∈ A : ‖α‖ = n}.
Then An := card(An) ∈ N for all n.

The generating function of a sequence (An)n∈ω is A(z) =
∑

n≥0Anz
n . The

coefficient An of zn is often denoted by [zn]A(z). Note that A(z) is just a
purely formal power series, but can be considered as a standard analytic object
when the series converges in a neighborhood of 0, i.e. radius of convergence
(r.o.c.) of A(z) at 0 is positive.
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There are five basic, admissible ways of constructing compound combinato-
rial structures. Let (A, ‖ ·‖A), (B, ‖ ·‖B), (C, ‖ ·‖C) be combinatorial structures
with corresponding generating functions A(z), B(z), C(z), respectively.

Cartesian Product: A = B×C can be considered as a combinatorial struc-
ture when a norm is defined by ‖(β, γ)‖A = ‖β‖B + ‖γ‖C. Note that
An =

∑n
k=0 Bk Cn−k holds, so we have A(z) = B(z) · C(z).

Disjoint Union: A = B + C represents the set-theoretic disjoint union of
two disjoint copies of B and C. We obviously have An = Bn + Cn and
A(z) = B(z) + C(z).

Sequence: Assume B contains no object of size 0, i.e., [z0]B(z) = 0. Then
the sequence class is defined by the infinite sum S{B} = {ǫ} + B +
(B × B) + (B × B × B) + · · · with ǫ being the null structure of size
0. The size of a sequence is the sum of the sizes of its components:
A(z) = 1+B(z)+(B(z))2+(B(z))3+· · · = 1

1−B(z) , where the geometric

sum converges since [z0]B(z) = 0.

Powerset: A = P{B} is the structure consisting of all finite subsets of
class B permitting no repetitions. The size of a set is the sum of the
sizes of its non-repeating components:

A(z) = exp





∑

k≥1

(−1)k−1B(zk)

k



 .

Multiset: A = M{B} consists of all finite multisets [β1, . . . , βℓ ] of elements
of B. We assume here that [z0]B(z) = 0. Multisets are like sets except
that repetitions of elements are allowed. The size of a multiset is the
sum of the sizes of its components:

A(z) = exp





∑

k≥1

B(zk)

k



 .

Given two sequences (an)n and (bn)n of real numbers, an is asymptotic to
bn if an ∼ bn, i.e., limn→∞

an

bn
= 1. an = O(bn) denotes that there are two

constants C and n0 such that |an| ≤ C · |bn| whenever n ≥ n0 . Here |a| means
the absolute value. The next theorem shows the importance of the singularity
nearest to the origin, cf. [15].

Theorem A.1. If f(z) is analytic at 0 and R is the modulus of a singular-
ity of f(z) nearest to the origin, then the coefficients fn = [zn]f(z) satisfy
lim sup |fn|1/n = 1

R . That is, for all ǫ > 0, (1) |fn|1/n exceeds (R−1 − ǫ) infin-

itely often, and (2) |fn|1/n is dominated by (R−1 + ǫ) almost everywhere.

We will need three more facts.
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Theorem A.2 (Pringsheim’s lemma). If a function with a finite r.o.c. has
nonnegative Taylor coefficients, then one of its singularities of smallest modulus
is real positive.

For a proof, see e.g. Theorem 3.10 in [10]. In the following this theorem will
be always applicable since the Taylor coefficients of a generating function are
always nonnegative.

Theorem A.3 (Weierstrass’ preparation theorem). Assume F (z, w) is a func-
tion of two complex variables and is analytic in a neighborhood |z − z0| < r,
|w − w0| < ρ of the point (z0, w0), and suppose that F (z0, w0) = 0 and
F (z0, w) 6≡ 0. Then there is a neighborhood |z− z0| < r′ < r, |w−w0| < ρ′ < ρ
in which F (z, w) can be written as F (z, w) = (A0(z)+A1(z) ·w+ · · ·+Ak−1(z) ·
wk−1 + wk) ·G(z, w), where k is a natural number such that

∂F (z0, w0)

∂w
= · · · = ∂k−1F (z0, w0)

∂wk−1
= 0 and

∂kF (z0, w0)

∂wk
6= 0.

The functions A0(z),. . . , Ak−1(z) are analytic on |z−z0| < r′, and the function
G(z, w) is analytic and nonzero on |z − z0| < r′, |w − w0| < ρ′.

See Section 7.21 in [18] for a proof. This theorem means that, despite the
seeming generality of the equation F (z, w) = 0, there is a neighborhood of
the point (z0, w0) where it is equivalent to an algebraic equation of the form
A0(z) +A1(z) · w + · · ·+ Ak−1(z) · wk−1 + wk = 0.

Finally, we also need Schur’s theorem.

Theorem A.4 (Schur [2]). Let U(z) =
∑∞

ℓ=0 uℓ · zℓ and V (z) =
∑∞

ℓ=0 vℓ · zℓ
be two power series such that for some τ ≥ 0, V (z) has the r.o.c. τ , and U(z)

has the r.o.c. larger than τ . Then limℓ→∞
[zℓ](U(z)·V (z))

vℓ
= U(τ).

Having seen the basic concepts of combinatorics, we are now ready to analyze
the analytic behavior of the combinatorial structures S, Sd, P, Pd,M , and Md

introduced in Section 3.
Let sℓ := card(Sℓ), s

d
ℓ := card(Sd

ℓ ) and so on. Moreover, let S(z), Sd(z),
etc. be the corresponding generating functions: S(z) =

∑∞
ℓ=0 sℓ · zℓ, Sd(z) =

∑∞
ℓ=0 s

d
ℓ · zℓ, etc. Then we have the following.

S(z) = 1 + P (z) +M(z) = M(P (z)),

P (z) =

∞
∑

ℓ=0

(z · S(z))ℓ+1 = −1 +

∞
∑

ℓ=0

(z · S(z))ℓ,(A.8)

M(z) = M(P (z))− (1 + P (z)),

where M(f(z)) := exp(
∑∞

ℓ=1 f(z
ℓ)/ℓ) denotes the multiset operator. Further-

more

Sd(z) = 1 + P d(z) +Md(z) = M(P d(z)),
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P d(z) =

d
∑

ℓ=0

(z · Sd(z))ℓ+1,(A.9)

Md(z) = M(P d(z))− (1 + P d(z)),

Indeed, o is the unique one with norm 0 since the elements from P have
positive norms. So does each element of M . Since each α ∈ P is of the
form fjα0 · · ·αj for some j ∈ N and α0, . . . , αj ∈ S, we have to consider
all possibilities of combinations, i.e., P (z) =

∑∞
ℓ=0(z · S(z))ℓ+1. Finally, the

multiset contains at least two elements of P , so the empty multiset and the
one-element multisets are ignored. We can characterize P d(z) in a similar way:

P (z) =

∞
∑

ℓ=0

(z · S(z))ℓ+1 = −1 +

∞
∑

ℓ=0

(z ·M(P (z)))ℓ,

P d(z) =

d
∑

ℓ=0

(z · Sd(z))ℓ+1 = −1 +

d+1
∑

ℓ=0

(z ·M(P d(z)))ℓ.

We are now going to establish that S(z) has a positive radius of convergence
(r.o.c.) ρ < 1. Note first that S, P, M have the same r.o.c. ρ. Since it is
easier to handle, we shall work with P (z) to get some information about ρ. We
won’t calculate ρ concretely which is another, not trivial task. We obviously
have ρ < 1. In fact, ρ ≤ 1/α, where α is Otter’s tree constant, since 1/α is
the r.o.c. of the generating function for finite rooted trees: Considering the
elements of S as labeled trees, there exist more labeled trees of a given norm
than (unlabeled) rooted finite trees of the same norm.

Assume ρ is positive, then

(A.10) P (z) = −1 +

∞
∑

ℓ=0

(z ·M(P (z)))ℓ =
z ·M(P (z))

1− z ·M(P (z))
.

Since all the coefficients of P (z) are positive, z = ρ is a singularity of P (z)
by Pringsheim’s lemma, TheoremA.2. And for z, |z| < ρ, we have P (z) =
F(P (z)), where F : CC → CC is defined by

F(f)(z) := F(f(z)) :=
z ·M(f(z))

1− z ·M(f(z))
.

In order to show the positiveness of ρ, we make use of Banach’s fixed point
theorem.

Theorem A.5 (Banach’s fixed point theorem). Let (X, d) be a non-empty
complete metric space with a contraction mapping H : X → X, i.e. there
exists q ∈ [0, 1) such that

d(H(x), H(y)) ≤ q · d(x, y)
for all x, y ∈ X. Then H admits a unique fixed point x0 ∈ X, i.e. H(x0) = x0.
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We claim that there exists a positive real number R < 1 such that F is a
contraction mapping on the following set

AR := {f : C → C | f analytic on CR(0), f(R) ≤
1

2
, f(0) = 0,

and [zn]f(z) are positive for n > 0}.

Here CR(0) is the set of all z such that |z| ≤ R. Then by Banach’s fixed point
theorem F has a unique fixed point f0. Note then that [zn]f0(z) = [zn]P (z)
for all n. This implies that 0 < R ≤ ρ, i.e. ρ is positive.

Proof of the claim: Given a function f : C → C with f(0) = 0, let f ′ denote the
function satisfying f(z) = z · f ′(z). AR can be considered as a complete metric
space with the metric ‖f − g‖ := max|z|≤R{ |f ′(z) − g′(z)| }. Let f, g ∈ AR.
For z such that |z| ≤ R < 1, it holds that

|M(f(z))| =
∣

∣

∣ exp
(

∑

ℓ≥1

zℓ · f ′(zℓ)

ℓ

)∣

∣

∣ ≤ exp
(

∑

ℓ≥1

|z|ℓ · f ′(|z|ℓ)
ℓ

)

≤ exp
(

∑

ℓ≥1

|z|ℓ · f ′(R)

ℓ

)

= exp
(

f ′(R) · ln
( 1

1− |z|
))

=
( 1

1− |z|
)f ′(R)

≤
( 1

1−R

)f ′(R)

≤
( 1

1−R

)2/R

.

Since limR→0+

(

1
1−R

)2/R

= e2 , we have limR→0+

(

R ·
(

1
1−R

)2/R)

= 0. This

implies that F (f) is analytic on CR(0) and |F (f(z))| ≤ 1
2 for a sufficiently

small R, i.e., F : AR → AR is well-defined for some R > 0. Furthermore, for z
such that 0 < |z| ≤ R < 1, we have

∣

∣

∣

F(f(z))−F(g(z)))

z

∣

∣

∣ =
∣

∣

∣

M(f(z))−M(g(z))

(1− z ·M(f(z))) · (1− z ·M(g(z)))

∣

∣

∣

=
∣

∣

∣

∑

ℓ≥1
zℓ

ℓ · (f ′(zℓ)− g′(zℓ))

(1− z ·M(f(z))) · (1− z ·M(g(z)))

∣

∣

∣

≤ log(1/(1− |z|))
|(1 − z ·M(f(z))) · (1− z ·M(g(z)))| · ‖f − g‖.

Since limR→0+ log( 1
1−R ) = 0 and limR→0+

(

1−R ·
(

1
1−R

)2/R)−1

= 1, we may

assume for sufficiently small R that ‖F(f)−F(g)‖ < 1
2 · ‖f − g‖ . �

Now that the well-definedness of P (and so of S andM) and ρ > 0 is proved,
we have for z with |z| ≤ ρ

(A.11)
P (z)

1 + P (z)
= z ·M(P (z))
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which follows from P (z) = F(P (z)). This implies limx→ρ− P (x) exists for
x ∈ R. Otherwise we would have 1 = ∞. Therefore, for all z with |z| = ρ, P (z)
converges and satisfies (A.11).

Let g(z, w) := (1 + w) · ew ·G(z), where

G(z) = exp

(

∑

ℓ≥2

P (zℓ)

ℓ

)

.

We have then P (z) = z · g(z, P (z)). Since ρ < 1 is the r.o.c. of P (z), g(z, w)
is holomorphic (i.e., analytic in z, w separately and continuous) for |z| < ρ1/2.
The implicit function theorem says that if |z0| ≤ ρ and w0 = P (z0), then

unless z0
∂g
∂w (z0, w0) = 1, there is a neighborhood of z0 in which the equation

w = z · g(z, w) has a unique solution with w = w0 at z = z0, which must be
(an analytic continuation of) w = P (z).

Therefore z0
∂g
∂w (z0, w0) = 1 should hold when z0 = ρ and w0 = P (ρ) because

ρ is the r.o.c. of P (z). We will use this fact in order to compute P (ρ). Note
first that

z · ∂g
∂w

(z, w) = z · (ew ·G(z) + (1 + w) · ew ·G(z))
= z · (2 + w) · ew ·G(z)

and therefore, ρ(2 + P (ρ)) · eP (ρ) ·G(ρ) = 1, that is,

(A.12) ρ · eP (ρ) ·G(ρ) = 1

2 + P (ρ)
.

On the other hand, by (A.11) we have P (ρ) = ρ · (1 + P (ρ)) · eP (ρ) ·G(ρ), so

(A.13)
ρ(eP (ρ) ·G(ρ) + (1 + P (ρ)) · eP (ρ) ·G(ρ)) = ρ · eP (ρ) ·G(ρ) + P (ρ)

= 1.

By (A.12) and (A.13) we have P (ρ)2 + P (ρ)− 1 = 0, i.e.,

(A.14) P (ρ) =
−1 +

√
5

2
.

This equation is true for every z0, |z0| = ρ, at which P (z0) fails to be analytic.
On the other hand, if |z0| = ρ and P (z0) = P (ρ), then |P (z0)| = P (|z0|). Since,
however, all the coefficients pn, pn+1 are positive, it follows that |pn+pn+1·z0| =
pn + pn+1 · |z0| which is possible only if z0 = |z0| = ρ. Therefore, z = ρ is the
only singularity on the circle |z| = ρ in the complex plane.

Theorem A.6. The generating function S(z) has the positive r.o.c. ρ < 1
which is the only singularity on the circle |z| = ρ in the complex plane.

Proof. It follows directly from (A.8) since the generating function S(z), P (z)
and M(z) have the same r.o.c. �



FRIEDMAN-WEIERMANN STYLE INDEPENDENCE RESULTS 399

Applying Weierstrass’ preparation theorem, TheoremA.3, we are going to
show that the singularity of S(z) at z = ρ is a branch point. Note first that by
(A.8) we have

(A.15) S(z) = M

(

∞
∑

ℓ=1

(z · S(z))ℓ
)

= exp

(

z · S(z)
1− z · S(z)

)

·H(z),

where H(z) = exp
(

∑∞
ℓ=2

∑
∞

k=1
(zℓ·S(zℓ))k

ℓ

)

. Set

(A.16) g(z, w) = exp

(

z · w
1− z · w

)

·H(z),

where w 6= 1/z. Then g is holomorphic for |z| < ρ1/2, and we have S(z) =
g(z, S(z)). Set F (z, w) = g(z, w)− w, z0 = ρ, and w0 = S(ρ).

We claim

(A.17) F (z0, w0) = 0, F (z0, w) 6≡ 0,
∂F

∂w
(z0, w0) = 0, and

∂2F

∂w2
(z0, w0) 6= 0.

Still to show is ∂2F
∂w2 (z0, w0) 6= 0. By definition it follows that

∂F

∂w
(z, w) =

z

(1− z · w)2 · exp
(

z · w
1− z · w

)

·H(z)− 1,(A.18)

∂2F

∂w2
(z, w) =

z2

(1− z · w)3 ·
(

1

1− z · w + 2

)

· exp
(

z · w
1− z · w

)

·H(z)

=

(

∂F

∂w
(z, w) + 1

)

· z

1− z · w ·
(

1

1− z · w + 2

)

.

For z 6= 0, ∂F
∂w (z, w) = ∂2F

∂w2 (z, w) = 0 implies z · w = 3/2. On the other hand,

F (z0, w0) = exp
(

z0·w0

1−z0·w0

)

·H(z0)−w0 = 0, so by (A.18), z0·w0

(1−z0·w0)2
= 1. This

implies that ∂2F
∂w2 (z0, w0) 6= 0 if z0 · w0 = 3/2.

Now we apply Weierstrass’ preparation theorem. Because of (A.17), there
are A0(z), A1(z) analytic in a neighborhood of z0 such that

F (z, w) = (A0(z) +A1(z) · w + w2) ·G(z, w),
where G(z, w) is analytic and nonzero in a neighborhood of (z0, w0). This
implies that the equation F (z, w) = 0 is locally equivalent to the equation
A0(z) +A1(z)w + w2 = 0. Following the arguments in Section 3.12 of [10], we
can show that z0 = ρ is actually a branch point. In fact, in a neighborhood of
z0 = ρ, the analytic continuations of S(z) at all points other than z0 = ρ are
given by

(A.19) S(z) = h(
√
ρ− z) = 1+h1 ·

√
ρ− z+h2 · (ρ−z)+h3 · (

√
ρ− z)3+ · · · ,

where h1 6= 0 and h(w) = 1 + h1w+ h2w
2 + h3w

3 + · · · is an analytic function
in a neighborhood of w = 0. �
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The following lemma asserts that the coefficients sn of the power series S(z)
are asymptotic to those of h1

√
ρ− z expanded (by the binomial theorem) about

z = 0. See e.g. Wilf [21].

Lemma A.7 (Darboux). Suppose a(z) = a0+a1z+a2z
2+· · · has r.o.c. ρ, and

has no singularities other than z = ρ on the circle |z| = ρ. If in a neighborhood
of z = ρ, a(z) = h0+h1 ·

√
ρ− z+h2 · (ρ−z)+h3 · (ρ−z)3/2+ · · · with h1 6= 0,

where h(w) = h0 + h1w + h2w
2 + · · · is analytic in a neighborhood of w = 0,

then for each m ≥ 0,

aℓ =
−h1
2
√
πτ

τ3

ℓ3/2

{

1 +
c1
ℓ
+
c2
ℓ2

+ · · ·+ cm
ℓm

+Om

(

1

ℓm+1

)}

,

where τ = ρ−1, c1, c2, . . . , cm are constants, and the subscript m indicates
that the implied O constant may depend on m. More generally, if m is the
least odd number such that hm 6= 0, but all the other conditions hold, then
aℓ ∼ C · ρ−ℓ · ℓ−(m+2)/2 for some constant C.

Together with this lemma, (A.19) implies that sℓ ∼ C · ρ−ℓ · ℓ−3/2 for some
constant C > 0. 4

Up to now, we have only been talking about S(z), i.e., the case with no
restriction on the arity of fj . However, the arguments above can easily be
modified to work for Sd(z). Note first that the positiveness of the r.o.c. of
Sd(z) now follows directly from that of S(z). And by (A.9) we have

(A.20) Sd(z) = M

(

d+1
∑

ℓ=1

(z · Sd(z))ℓ

)

= exp

(

d+1
∑

ℓ=1

(z · Sd(z))ℓ

)

·Hd(z),

where Hd(z) = exp
(

∑∞
k=2

∑
d+1

ℓ=1
(zk·Sd(zk))ℓ

k

)

, i.e., Hd(z) depends only on z and

d. Set
gd(z, w) = exp(zw + z2w2 + · · ·+ zd+1wd+1) ·Hd(z).

Then gd is holomorphic in a neighborhood of (0, 0), and we have

(A.21) Sd(z) = gd(z, S
d(z))

for all z such that |z| < ρ2d. Set further Fd(z, w) := gd(z, w) − w, and αd :=
Sd(ρd). Then as in (A.17) we have

(A.22)
∂Fd

∂w
(ρd, αd) = 0.

We use the facts above to prove Theorem 3.6.

Theorem A.8. Let ρ and ρd, d ≥ 1, be the r.o.c.s of S(z) and Sd(z), resp.

(1) There is a real number C > 0 such that

sℓ ∼ C · ρ−ℓ · ℓ−3/2.

4For more details, see [5] which describes an algorithmic way.
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(2) There are real numbers Cd > 0 such that

sdℓ ∼ Cd · ρ−ℓ
d · ℓ−3/2.

(3) The sequence (ρd)d≥1 is weakly decreasing and converges to ρ.

Proof. It remains to show the last claim.
We obviously have ρd ≥ ρd+1 ≥ ρ. Thus (ρd)d≥1 converges, say to ρ∞ ≥ ρ.

Put αd := Sd(ρd) and f(z) := z + 2z2 · αd + · · ·+ (d + 1) · zd+1 · αd
d. Then by

(A.22) we have
∂gd
∂w

(ρd, αd) = f(ρd) · gd(ρd, αd) = 1.

Therefore, since f and Sd are weakly increasing on real numbers, we have

1

f(ρ1)
≤ αd = Sd(ρd) = gd(ρd, αd) =

1

f(ρd)
≤ 1

f(ρ∞)
.

This means αd must be bounded, say by L > 0. It also means that

lim
d→∞

Sd(ρ∞) ≤ L.

Assume ρ∞ > ρ. Then there is an n satisfying
∑n

ℓ=0 sℓ · ρℓ∞ > L . This
leads, however, to a contradiction:

L <

n
∑

ℓ=0

sℓ · ρℓ∞ =

n
∑

ℓ=0

snℓ · ρℓ∞ ≤
∞
∑

ℓ=0

snℓ · ρℓ∞ ≤ L.

The equality above holds because sℓ = snℓ by definition when n ≤ ℓ. In fact, if
α ∈ S and ‖α‖ ≤ n, then α contains no fj where j > n.

Finally, we should have ρ∞ = ρ. �
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