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ORE EXTENSIONS OF HOPF GROUP COALGEBRAS

Dingguo Wang and Daowei Lu

Abstract. The aim of this paper is to generalize the theory of Hopf-Ore
extension on Hopf algebras to Hopf group coalgebras. First the concept
of Hopf-Ore extension of Hopf group coalgebra is introduced. Then we
will give the necessary and sufficient condition for the Ore extensions to
become a Hopf group coalgebra, and certain isomorphism between Ore
extensions of Hopf group coalgebras are discussed.

1. Introduction

Ore extensions are main kinds of ring extensions to construct a class of non-
commutative rings and algebras. From the point of view of quantum group
and Hopf algebra theory, Ore extensions are important for constructing ex-
amples of Hopf algebras which are neither commutative nor cocommutative.
In recent years, many new examples (often finite dimensional) with special
properties were constructed by means of Ore extensions, such as pointed Hopf
algebras, co-Frobenius Hopf algebras, and quasitriangular Hopf algebras (see,
e.g., [1, 2, 5]).

Panov [6] introduced the concept and equivalent description of a Hopf-Ore
extension and given the classifications of Hopf-Ore extensions for some typical
Hopf algebras. Multiplier Hopf algebras were introduced by Van Daele [10] as a
generalisation of Hopf algebras to the case where the underlying algebra is not
necessarily unital. Lihui Zhao and Diming Lu [13] generalized the notion of Ore
extension of Hopf Algebras to regular multiplier Hopf algebras and obtained
the corresponding result. Hopf group coalgebras were introduced by V. G.
Turaev [8, 9]. Hopf group coalgebras generalize usual coalgebras and Hopf
algebras, in the sense that we recover these notions in the situation where the
group is trivial. Virelizier [11] started an algebraic study of this topic, this was
continued by Zunino [14, 15] and Wang [12]. It is natural to investigate the Ore
extensions of Hopf group coalgebras. This was the motivation of our paper.

The first problem we face is how to define the Ore extensions of Hopf group
coalgebras. Here we could resort to the method used in [3] which constructed
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the concept of differential calculus on Hopf group coalgebras, that is, let A =
{Aα}α∈π be a Hopf group coalgebra, and R = {Rα = Aα[yα;σα, δα]}α∈π,

where for any α ∈ π, Aα[yα;σα, δα] is the Ore extension of Aα. Then we make
R = {Rα}α∈π a Hopf group coalgebra. The comultiplication and counit could
be extended from A to R naturally.

In Section 2, we recall the definition of Hopf group coalgebras and some
basic facts about Hopf group coalgebras. In Section 3, we first introduce the
notion of an Ore extension for a Hopf group coalgebra, and extend ∆ and ε

from A to R such that R = {Rα}α∈π becomes a Hopf group coalgebra. In
the main theorem of this article, we give a necessary and sufficient condition
for Ore extensions of a Hopf group coalgebra to be a Hopf group coalgebra.
In Section 4, we will consider the isomorphisms between Ore extensions for
different Hopf group coalgebras and give the sufficient conditions.

2. Hopf group coalgebra

For convenience of the reader we recall the standard definitions of Hopf
algebras, see for instance [4, 7]. Throughout this paper, we let π be a discrete
group(with neutral element 1) and k be a field. All algebras are supposed to
be over k. If U and V are k-space, τU,V : U ⊗V −→ V ⊗U will denote the flip
defined by τU,V (u⊗ v) = v ⊗ u.

Definition 2.1. A π-coalgebra(over k) is a family C = {Cα}α∈π of k-spaces
endowed with a family k-linear maps (the comultiplication) and a k-linear map
ε : C1 −→ k (the counit) such that

(a) ∆ is a coassociative in the sense that, for any α, β, γ ∈ π,

(∆α,β ⊗ idCγ
)∆αβ,γ = (idCα

⊗∆β,γ)∆α,βγ ;

(b) for all α ∈ π,

(idCα
⊗ ε)∆α,1 = idCα

= (ε⊗ idCα
)∆1,α.

Note that (C1,∆1,1, ε) is a coalgebra in the usual sense.
Sweedler’s notation. We extend the Sweedler notation in the following way:
for any α, β ∈ π and c ∈ Cαβ , we write

∆α,β(c) =
∑

(c)

c(1,α) ⊗ c(2,β) ∈ Cα ⊗ Cβ .

Or shortly, if we leave the summation implicitly, ∆α,β(c) = c(1,α) ⊗ c(2,β).

The coassociativity axiom gives that, for any α, β, γ ∈ π and c ∈ Cαβγ ,

c(1,αβ)(1,α) ⊗ c(1,αβ)(2,β) ⊗ c(2,γ) = c(1,α) ⊗ c(2,βγ)(1,β) ⊗ c(2,βγ)(2,γ).

This element of Cα ⊗ Cβ ⊗ Cγ is written as c(1,α) ⊗ c(2,β ⊗ c(3,γ). For any c ∈
Cα1···αn

, by iterating the procedure we define inductively c(1,α1)⊗ · · ·⊗ c(n,αn).
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Definition 2.2. Let C = ({Cα,∆, ε}) be a π-coalgebra and A be an algebra
with multiplication m and unit element 1A. For any f ∈ Homk(Cα, A) and
g ∈ Homk(Cβ , A), we define their convolution product by

f ∗ g = m(f ⊗ g)∆α,β ∈ Homk(Cαβ , A).

Using (2.1), one verifies that the k-space

Conv(C,A) = ⊕α∈πHomk(Cα, A),

endowed with the convolution product ∗ and the unit element ε1A, is a π-graded
algebra, called convolution algebra.

Definition 2.3. A Hopf π-coalgebra is a π-coalgebra H = ({Hα,∆, ε}) en-
dowed with a family S = {Sα : Hα −→ Hα−1}α∈π of k-linear maps (the
antipode) such that

(a) each Hα is an algebra with multiplication mα and 1α ∈ Hα;
(b) ε : H1 −→ k and ∆α,β : Hαβ −→ Hα⊗Hβ (for all α, β ∈ π) are algebra

homomorphisms;
(c) for any α ∈ π,

mα(Sα−1 ⊗ idHα
)∆α−1,α = ε1α = mα(idHα

⊗ Sα−1)∆α,α−1 : H1 → Hα.

Note that (H1,m1, 11,∆1,1, ε, S1) is a Hopf algebra in the usual sense of the
word. We call it the neutral component of H . And axiom (c) says that Sα is
the inverse of idHα

in the convolution algebra Conv(H1, Hα).

Lemma 2.4. Let H = ({Hα}α∈π,∆, ε, S) be a Hopf π-coalgebra. Then

(a) ∆β−1,α−1Sαβ = τH
α−1 ,Hβ−1

(Sα ⊗ Sβ)∆α,β for any α, β ∈ π,

(b) εS1 = ε,

(c) Sα(ab) = Sα(b)Sβ(a) for any α ∈ π and a, b ∈ Hα,

(d) Sα(1α) = 1α−1 for any α ∈ π.

3. Main theorem

In this section, we will define the Ore extension of a Hopf group coalgebra
and prove the criterion for an Ore extension of a Hopf group coalgebra to be a
Hopf group coalgebra.

Definition 3.1. Let A be a k-algebra. Consider an endomorphism σ of the
algebra A over k and a σ-derivation δ of A. This means that

(3.1) δ(ab) = σ(a)δ(b) + δ(a)b.

The Ore extension R = A[y;σ, δ] of the k-algebra R generated by the variable
y and the algebra A with the relation

(3.2) ya = σ(a)y + δ(a)

for any a ∈ A.

Now with the definition of Hopf-Ore extension [6], we can define the Hopf
group coalgebra Ore extension.
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Definition 3.2. Let A = {Aα}α∈π be a Hopf group coalgebra, the family
R = {Rα = Aα[yα;σα, δα]}α∈π of k-spaces is called the Hopf Group coalgebra
Ore extension if R = {Rα}α∈π is also a Hopf group coalgebra, where for any
α ∈ π, Aα[yα;σα, δα] is the Ore extension of Aα, and there exist r1α, r

2
α ∈ Aα

such that

∆α,β(yαβ) = yα ⊗ r2β + r1α ⊗ yβ ,

and

∆β,α(yβα) = yβ ⊗ r2α + r1β ⊗ yα.

Note that R1 = A1[y1;σ1, δ1] is the Hopf-Ore extension in the sense of [6].
Now that R = {Rα}α∈π is a Hopf group coalgebra, if we apply the axioms

of (2.1) to Definition 3.2, we have on one hand

(∆α,β ⊗ idRγ
)∆αβ,γ(yαβγ) = (∆α,β ⊗ idRγ

)(yαβ ⊗ r2γ + r1αβ ⊗ yγ)

= ∆α,β(yαβ)⊗ r2γ +∆α,β(r
1
αβ)⊗ yγ

= (yα ⊗ r2β + r1α ⊗ yβ)⊗ r2γ +∆α,β(r
1
αβ)⊗ yγ

= yα ⊗ r2β ⊗ r2γ + r1α ⊗ yβ ⊗ r2γ +∆α,β(r
1
αβ)⊗ yγ .

On the other hand

(idRα
⊗∆β,γ)∆α,βγ(yαβγ) = (idRα

⊗∆β,γ)(yα ⊗ r2βγ + r1α ⊗ yβγ)

= yα ⊗∆β,γ(r
2
βγ) + r1α ⊗ (yβ ⊗ r2γ + r1β ⊗ yγ)

= yα ⊗∆β,γ(r
2
βγ) + r1α ⊗ yβ ⊗ r2γ + r1α ⊗ r1β ⊗ yγ .

We obtain

(3.3) ∆α,β(r
1
αβ) = r1α ⊗ r1β , ∆α,β(r

2
αβ) = r2α ⊗ r2β

for any α, β, γ ∈ π.

Lemma 3.3. If R = {Rα}α∈π is the Hopf group coalgebra Ore extension of

the Hopf group coalgebra A = {Aα}α∈π as above, then for any α, β ∈ π

(a) r1α and r2α are invertible in Aα,

(b) the equalities:

(3.4) ∆α,β((r
1
αβ)

−1) = (r1α)
−1 ⊗ (r1β)

−1,

and

(3.5) ∆α,β((r
2
αβ)

−1) = (r2α)
−1 ⊗ (r2β)

−1.

Proof. (1) First of all, from (3.3) we can see that r11 is a group-like element in
A1, so ε(r11) = 1.

mα(Sα−1 ⊗ id)∆
α

−1
,α
(r11) = mα(Sα−1 ⊗ id)(r1α−1 ⊗ r1α)

= Sα−1(r1α−1)r1α

= ε(r11)1α

= 1α.
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So we have Sα−1(r1
α−1 ) = (r1α)

−1, and similarly we get Sα−1(r2
α−1) = (r2α)

−1 for
any α ∈ π.

(2) By Lemma 2.4, We have

∆α,β((r
1
αβ)

−1) = ∆α,β(S(αβ)−1(r1(αβ)−1))

= ∆α,β(Sβ−1α−1(r1β−1α−1))

= τ(Sβ−1 ⊗ Sα−1)(∆β−1α−1(r1β−1α−1))

= τ(Sβ−1(r1β−1)⊗ Sα−1(r1α−1 ))

= (r1α)
−1 ⊗ (r1β)

−1.

Similarly we can prove the other equality. �

Replacing the generating elements yα by y
′

α = yα(r
2
α)

−1 and r1α(r
2
α)

−1 by
rα, we see that

∆α,β(y
′

αβ) = ∆α,β(yαβ(r
2
αβ)

−1)

= ∆α,β(yαβ) ·∆α,β((r
2
αβ)

−1)

= (yα ⊗ r2β + r1α ⊗ yβ) · ((r
2
α)

−1 ⊗ (r2β)
−1)

= yα(r
2
α)

−1 ⊗ 1 + r1α(r
2
α)

−1 ⊗ yβ(r
2
β)

−1

= y
′

α ⊗ 1 + rα ⊗ y
′

β .

And

(3.6)

∆α,β(rαβ) = ∆α,β(r
1
αβ(r

2
αβ)

−1)

= ∆α,β(r
1
αβ) ·∆α,β((r

2
αβ)

−1)

= (r1α ⊗ r1β) · ((r
2
α)

−1 ⊗ (r2β)
−1)

= r1α(r
2
α)

−1 ⊗ r1β(r
2
β)

−1

= rα ⊗ rβ .

Preserving the above notations, we assume in what follows that the elements
{yα}α∈π in the Hopf group coalgebra-Ore extension satisfying the relations

(3.7) ∆α,β(yαβ) = yα ⊗ 1 + rα ⊗ yβ

for some elements rα ∈ Aα satisfying ∆α,β(rαβ) = rα ⊗ rβ .

As usual, Adrα(a) = rαaSα−1(r−1
α ) = rαa(rα)

−1.

Lemma 3.4. If R = {Aα[yα;σα, δα]}α∈π is a Hopf group coalgebra-Ore exten-

sion of the Hopf group coalgebra A = {Aα}α∈π, then

(3.8) Sα−1(yα−1) = −(rα)
−1yα,

where (rα)
−1 = Sα−1(rα−1 ).

Proof. (rα)
−1 = Sα−1(rα−1) is easy to check. Now we have

mα(Sα−1 ⊗ idAα
)∆α−1,α(y1) = ε(y1)1α = 0,
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by (3.7), so
Sα−1(yα−1) + Sα−1(rα−1)yα = 0,

then
Sα−1(yα−1) = −Sα−1(rα−1)yα = −(rα)

−1yα. �

Now we will give the main result.

Theorem 3.5. The Ore extension R = {Aα[yα;σα, δα]}α∈π of the Hopf group

coalgebra A = {Aα}α∈π is a Hopf group coalgebra-Ore extension if and only if

there exists a group-like element r = {rα}α∈π such that the following conditions

hold:

(a) there is a character χ : A1 −→ k such that for any α ∈ π

(3.9) σα(a) =
∑

χ(a(1,1))a(2,α),

where a ∈ Aα;
(b) the following relation holds:

(3.10)
∑

χ(a(1,1))a(2,α) = Adrα(a(1,α))χ(a(2,1)),

(c) the σα-derivation δ satisfies the relation

(3.11) ∆α,βδαβ(a) =
∑

δα(a(1,α))⊗ a(2,β) + rαa(1,α) ⊗ δβ(a(2,β)).

Proof. The proof is presented under three headings. At step 1 we show that the
comultiplication ∆ = {∆α}α∈π can be extended to R = {Aα[yα;σα, δα]}α∈π

by (3.7) if and only if relations (3.9)-(3.11) hold. At step 2 we prove that R1

admits an extension of the counit from A1(in fact this has been proved in [6]).
At step 3 we show that R has antipode S extending the antipode S|A by (3.8).

Step 1. Comultiplication. Assume that the comultiplication ∆|A can be
extended to R = {Aα[yα;σα, δα]}α∈π by (3.7). Then the homomorphism ∆
preserve the relation

(3.12) yαa = σα(a)yα + δα(a)

for any α ∈ π and a ∈ Aα, i.e.,

(3.13) ∆α,β(yαβ)∆α,β(a) = ∆α,βσαβ(a)∆α,β(yαβ) + ∆α,βδαβ(a)

for any a ∈ Aαβ . We have

∆α,β(yαβ)∆α,β(a)

=
∑

(a)

(yα ⊗ 1 + rα ⊗ yβ)(a(1,α) ⊗ a(2,β))

=
∑

(a)

yαa(1,α) ⊗ a(2,β) + rαa(1,α) ⊗ yβa(2,β)

=
∑

(a)

σα(a(1,α))yα ⊗ a(2,β) + δα(a(1,α))⊗ a(2,β)

+ rαa(1,α) ⊗ σβ(a(2,β))yβ + rαa(1,α) ⊗ δβ(a(2,β))
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=
∑

(a)

(σα(a(1,α))⊗ a(2,β))(yα ⊗ 1) + rαa(1,α) ⊗ σβ(a(2,β))yβ

+ δα(a(1,α))⊗ a(2,β) + rαa(1,α) ⊗ δβ(a(2,β))

=
∑

(a)

(σα(a(1,α))⊗ a(2,β))(yα ⊗ 1) + (rαa(1,α)r
−1

α ⊗ σβ(a(2,β))(rα ⊗ yβ)

+ δα(a(1,α))⊗ a(2,β) + rαa(1,α) ⊗ δβ(a(2,β)).

And

∆α,βσαβ(a)∆α,β(yαβ) + ∆α,βδαβ(a)

= ∆α,βσαβ(a)(yα ⊗ 1 + rα ⊗ yβ) + ∆α,βδαβ(a)

= ∆α,βσαβ(a)(yα ⊗ 1) + ∆α,βσαβ(a)(rα ⊗ yβ) + ∆α,βδαβ(a).

It is clear that ∆ preserves (3.12) if and only if the following relations hold:

(3.14) ∆α,βσαβ(a) =
∑

(a)

(σα(a(1,α))⊗ a(2,β)),

(3.15) ∆α,βσαβ(a) =
∑

(a)

Adrα(a(1,α))⊗ σβ(a(2,β)),

∆α,βδαβ(a) =
∑

(a)

δα(a(1,α))⊗ a(2,β) + rαa(1,α) ⊗ δβ(a(2,β))

for any a ∈ Aαβ . The last equation coincides with (3.11).
Let us show that (3.14) and (3.15) imply (3.10) and (3.11). Define a family

of maps {χα : A1 −→ Aα}α∈π by

χα(a) =
∑

(a)

σα(a(1,α))Sα−1(a(2,α−1))

for any a ∈ A1.

Obvious compulation gives

∆α,1(χα(a))

=
∑

(a)

∆α,1(σα(a(1,α))Sα−1(a(2,α−1)))

=
∑

(a)

∆α,1(σα(a(1,α)))∆α,1Sα−1(a(2,α−1))

=
∑

(a)

[σα(a(1,α)(1,α))⊗ a(1,α)(2,1)][Sα−1(a(2,α−1)(2,α−1))⊗ S1(a(2,α−1)(1,1))]

=
∑

(a)

σα(a(1,α)(1,α))Sα−1(a(2,α−1)(2,α−1))⊗ a(1,α)(2,1)S1(a(2,α−1)(1,1))

=
∑

(a)

σα(a(1,α))Sα−1(a(4,α−1))⊗ a(2,1)S1(a(3,1))
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= χα(a)⊗ 1,

and

∆1,α(χα(a))

=
∑

(a)

∆1,α(σα(a(1,α))∆1,αSα−1(a(2,α−1))

=
∑

(a)

[σ1(a(1,α)(1,1))⊗ a(1,α)(2,α)][τ(Sα−1 ⊗ S1)∆α−1,1(a(2,α−1))]

=
∑

(a)

[σ1(a(1,α)(1,1))⊗ a(1,α)(2,α)][S1(a(2,α−1)(2,1))⊗ Sα−1(a(2,α−1)(1,α−1))]

=
∑

(a)

σ1(a(1,α)(1,1))S1(a(2,α−1)(2,1))⊗ a(1,α)(2,α)Sα−1(a(2,α−1)(1,α−1))

=
∑

(a)

σ1(a(1,1))S1(a(4,1))⊗ a(2,α)Sα−1(a(3,α−1))

=
∑

(a)

σ1(a(1,1))S1(a(2,1))⊗ 1α

= χ1(a)⊗ 1α,

so we have

χα(a) = (ε⊗ id)∆1,α(χα(a)) =
∑

(a)

ε(σ1(a(1,1))S1(a(2,1)))1α

=
∑

(a)

ε(σ1(a(1,1))ε(S1(a(2,1)))1α =
∑

(a)

ε(σ1(a(1,1))ε(a(2,1))1α

= ε(σ1(a))1α.

Also we have for any α ∈ π, χα(a) = ε(χ1(a))1α. Indeed from Theorem 1.3
of [6], we know that for any a ∈ A1, χ1(a) belongs to k, thus χα(a) could
be identified with an element in k as well. One can regard χα as a mapping
χ : A1 −→ k. Since for any α ∈ π, σα is an endomorphism, it follows that

χα(ab) =
∑

(a)(b)

σα(a(1,α)b(1,α))Sα−1(a(2,α−1)b(2,α−1))

=
∑

(a)(b)

σα(a(1,α))σα(b(1,α))Sα−1(b(2,α−1))Sα−1(a(2,α−1))

=
∑

(a)

σα(a(1,α))χα(b)Sα−1(a(2,α−1))

= χα(a)χα(b),
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χα(a+ b) =
∑

(a)(b)

σα((a+ b)(1,α))Sα−1((a+ b)(2,α−1))

=
∑

(a)(b)

σα(a(1,α))Sα−1(a(2,α−1)) + σα(b(1,α))Sα−1(b(2,α−1))

= χα(a) + χα(b).

One can recover σα from χα(a). In fact for any a ∈ Aα, ∆1,α(a) =
∑

(a) a(1,1)⊗

a(2,α) and

∑

(a)

χα(a(1,1))a(2,α) =
∑

(a)

σα(a(1,1)(1,α))Sα−1(a(1,1)(2,α−1))a(2,α)

=
∑

(a)

σα(a(1,α))Sα−1(a(2,α−1))a(3,α)

= σα(a).

This proves (3.9).
Substituting σα into (3.15), we obtain

∑

(a)

∆1,α(χα(a(1,1))a(2,α)) =
∑

(a)

Adr1(a(1,1))⊗ σα(a(2,α))

=
∑

(a)

Adr1(a(1,1))⊗ χα(a(2,α)(1,1))a(2,α)(2,α)

=
∑

(a)

Adr1(a(1,1))⊗ χα(a(2,1))a(3,α).

And because for any a ∈ A1, χα(a) ∈ k1, we have

∑

(a)

∆1,α(χα(a(1,1))a(2,α)) =
∑

(a)

χα(a(1,1))∆1,α(a(2,α))

=
∑

(a)

χα(a(1,1))a(2,α)(1,1) ⊗ a(2,α)(2,α)

=
∑

(a)

χα(a(1,1))a(2,1) ⊗ a(3,α),

∑

(a)

∆α,1(χα(a(1,1))a(2,α)) =
∑

(a)

Adrα(a(1,α))⊗ σ1(a(2,1))

=
∑

(a)

Adrα(a(1,α))⊗ χ1(a(2,1)(1,1))a(2,1)(2,1)

=
∑

(a)

Adrα(a(1,α))⊗ χ1(a(2,1))a(3,1),
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and
∑

(a)

∆α,1(χα(a(1,1))a(2,α)) =
∑

(a)

χα(a(1,1)∆α,1(a(2,α))

=
∑

(a)

χα(a(1,1)a(2,α)(1,α) ⊗ a(2,α)(2,1)

=
∑

(a)

χα(a(1,1))a(2,α) ⊗ a(3,1),

that is
∑

(a)

Adrα(a(1,α))⊗ χ1(a(2,1))a(3,1) =
∑

(a)

χα(a(1,1))a(2,α) ⊗ a(3,1).

So we have
∑

(a)

Adrα(a(1,α))χ1(a(2,1))a(3,1)S1(a(4,1)) =
∑

(a)

χα(a(1,1))a(2,α)a(3,1)S1(a(4,1)),

∑

(a)

Adrα(a(1,α))χ1(a(2,1)) =
∑

(a)

χα(a(1,1))a(2,α).

This proves (3.10). We have proved that conditions (3.9)-(3.11) are necessary
conditions of the comultiplication.
On the other hand, if conditions (3.9)-(3.11) hold, then for any a ∈ Aαβ

∆α,β(σαβ(a)) =
∑

(a)

χ(a(1,1))∆α,β(a(2,αβ))

=
∑

(a)

χ(a(1,1))a(2,αβ)(1,α) ⊗ a(2,αβ)(2,β)

=
∑

(a)

χ(a(1,1))a(2,α) ⊗ a(3,β)

=
∑

(a)

σα(a(1,α))⊗ a(2,β)

and

∆α,β(σαβ(a)) =
∑

(a)

∆α,β(Adrαβ
(a(1,αβ))χ(a(2,1)))

=
∑

(a)

Adrα(a(1,αβ)(1,α))⊗Adrβ (a(1,αβ)(2,β))χ(a(2,1))

=
∑

(a)

Adrα(a(1,α))⊗Adrβ (a(2,β))χ(a(3,1))

=
∑

(a)

Adrα(a(1,α))⊗ σβ(a(2,β)).
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This proves the relations (3.14) and (3.15) hold and the comultiplication ∆|A
can be extended to a homomorphism ∆ : R −→ R ⊗ R. Since (∆α,β ⊗
idAγ

)∆αβ,γ(a) = (idAα
⊗∆β,γ)∆α,βγ(a) and since (∆α,β ⊗ id)∆αβ,γ(yαβγ) =

(id ⊗ ∆β,γ)∆α,βγ(yαβγ) for any α, β, γ ∈ π and a ∈ Aαβγ . The mapping
∆ : R −→ R⊗R is a comultiplication.

Step 2. Counit. For this part, from [6] we have known that, as R1 admits a
comultiplication, there exists a counit extending ε|A1

and satisfying ε(y1)=0.
It follows that ε admits an extension to R if and only if

ε(δ1(a)) = 0,

for any a ∈ A1.

Step 3. Antipode. Let R be as in Step 1. Recall that S = {Sα : Aα →
Aα−1}α∈π with Sα being an antiautomorphism and

∆β−1,α−1Sαβ = τH
α−1 ,Hβ−1

(Sα ⊗ Sβ)∆α,β

for any α, β ∈ π. If R admits an antipode S which can be extended(as an
antiautomorphism) from A to R by means of (3.8), then S preserves (3.12).
This means that for any a ∈ Aα

(3.16) Sα(a)Sα(yα) = Sα(yα)Sασα(a) + Sαδα(a).

On the other hand, if relation (3.16) holds, then S can be extended as an
antiautomorphism from A to R by means of (3.8). Using the expression b =∑

ciy
i
α of the arbitrary element b ∈ Rα, one can readily see that the mappings

S = {Sα: Rα
−→ Rα−1} defines above is an antipode of R.

Hence the existence of an antipode of R satisfying (3.8) is equivalent to
(3.16). It follows from (3.8) that for any a ∈ Aα

−Sα(a)(rα−1)−1yα−1 = − (rα−1 )−1yα−1Sα(σα(a)) + Sαδα(a),

−Sα(a)(rα−1)−1yα−1 = − (rα−1 )−1σα−1(Sα(σα(a)))yα−1

− (rα−1 )−1δα−1(Sα(σα(a))) + Sαδα(a).

Condition (3.16) holds if and only if the following two conditions hold:

(3.17) Sα(a)(rα−1 )−1 = (rα−1)−1σα−1(Sα(σα(a))),

(3.18) (rα−1 )Sαδα(a) = δα−1(Sα(σα(a))).

Let us prove (3.17). We have

σα−1(Sα(σα(a)))

=
∑

(a)

σα−1(Sα(χ(a(1,1))a(2,α)))

=
∑

(a)

χ(a(1,1))σα−1(Sα(a(2,α)))

=
∑

(a)

χ(a(1,1))Ad(r
α−1 )−1((Sα(a(2,α)))(1,α−1))χ((Sα(a(2,α)))(2,1))
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=
∑

(a)

χ(a(1,1))Ad(rα−1 )−1(Sα(a(2,α)(2,α))χ((S1(a(2,α)(1,1)))

=
∑

(a)

χ(a(1,1))Ad(r
α−1 )−1(Sα(a(3,α))χ((S1(a(2,1)))

=
∑

(a)

χ(ε(a(1,1))1)Ad(r
α−1 )−1(Sα(a(2,α))

= Ad(rα−1 )−1(Sα(a)).

Our next objective is to prove (3.18). It follows from (3.9) that we present
(3.18) in an equivalent form,

(3.19) (rα−1 )Sαδα(a) =
∑

(a)

χ(a(1,1))δα−1(Sα(a(2,α))).

We denote Lα = (rα−1)Sαδα(a) and Mα =
∑
(a)

χ(a(1,1))δα−1(Sα(a(2,α))).

From (3.11) we have

∆α,α−1(δ1(a)) =
∑

(a)

δα(a(1,α))⊗ a(2,α−1) + rαa(1,α) ⊗ δα−1(a(2,α−1)),

and we apply m(id⊗ Sα−1) to the above equality, we get

m(id⊗ Sα−1)(∆α,α−1 (δ1(a)))

= m(id⊗ Sα−1)(
∑

(a)

δα(a(1,α))⊗ a(2,α−1) + rαa(1,α) ⊗ δα−1(a(2,α−1))),

0 = ε(δ1(a)))1α

=
∑

(a)

δα(a(1,α))Sα−1(a(2,α−1)) + rαa(1,α)Sα−1(δα−1(a(2,α−1))),

− (rα)
−1

∑

(a)

δα(a(1,α))Sα−1(a(2,α−1)) =
∑

(a)

a(1,α)Sα−1(δα−1(a(2,α−1))).

Then for any a ∈ Aα−1

(3.20)

Lα−1 = rαSα−1δα−1(a) =
∑

(a)

rαε(a(1,1))Sα−1δα−1(a(2,α−1))

=
∑

(a)

rαSα−1(a(1,α−1))a(2,α)Sα−1δα−1(a(3,α−1))

=
∑

(a)

−rαSα−1(a(1,α−1))(rα)
−1δα(a(2,α))Sα−1(a(3,α−1))

=
∑

(a)

−Adrα(Sα−1(a(1,α−1)))δα(a(2,α))Sα−1(a(3,α−1)).
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On the other hand, for any a ∈ A1, we have ε(a)1α =
∑

(a) a(1,α)Sα−1(a(2,α−1)).

The action by δα on both sides gives

0 =
∑

(a)

δα(a(1,α))Sα−1(a(2,α−1)) + σα(a(1,α))δαSα−1(a(2,α−1)),

(3.21)
Mα−1

=
∑

(a)

χ(a(1,1))δα(Sα−1(a(2,α−1)))

=
∑

(a)

χ(a(1,1))ε(a(2,1))δα(Sα−1(a(3,α−1)))

=
∑

(a)

χ(a(1,1))σα(Sα−1(a(2,α−1))a(3,α))δα(Sα−1(a(4,α−1)))

=
∑

(a)

χ(a(1,1))σα(Sα−1(a(2,α−1)))σα(a(3,α))δα(Sα−1(a(4,α−1)))

= −
∑

(a)

χ(a(1,1))σα(Sα−1(a(2,α−1)))δα(a(3,α))Sα−1(a(4,α−1))

= −
∑

(a)

χ(a(1,1))Adrα(Sα−1(a(2,α−1))(1,α))χ(Sα−1(a(2,α−1))(2,1))δα(a(3,α))Sα−1(a(4,α−1))

= −
∑

(a)

χ(a(1,1))Adrα(Sα−1(a(3,α−1)))χ(S1(a(2,1)))δα(a(4,α))Sα−1(a(5,α−1))

= −
∑

(a)

χ(ε(a(1,1))1)Adrα(Sα−1(a(2,α−1)))δα(a(3,α))Sα−1(a(4,α−1))

= −
∑

(a)

Adrα(Sα−1(a(1,α−1)))δα(a(2,α))Sα−1(a(3,α−1)).

Comparing (3.20) and (3.21) we conclude that Lα = Mα. This proves both
relation (3.19) and the existence of an antipode. �

Here we give an example from [12], and ours is a little different, where the
condition crossing is not necessarily needed.

Example 3.6. For n ∈ Z and α = (αij), β = (βij) ∈ GLn(k), let B
(α,β)
n be the

algebra generalized by symbols g, x1, . . . , xn satisfying the following relations:
for i ∈ {1, 2, . . . , n},

g2 = 1, x2
i = 0, gxi = −xig, xixj = −xjxi.

The family of algebrasDn={B
(α,β)
n }(α,β)∈ς(GLn(k)) has a structure of ς(GLn(k))-

coalgebra given, for any α = (αij), β = (βij), λ = (λij), γ = (γij) ∈ ς(GLn(k)),
and i ≤ i ≤ n, by

∆(α,β),(λ,γ)(g) = g ⊗ g,

∆(α,β),(λ,γ)(xi) =

n∑

k=1

γ̃k,ixk ⊗ 1 + 1⊗

n∑

k=1,i=1,p=1

γk,iα̃i,pγ̃p,kxk,
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ε(g) = 1, ε(xi) = 0,

S(α,β)(g) = g, S(α,β)(xi) =

n∑

k=1,p=1

β̃k,jα̃j,igxk,

where (α̃i,j) = α−1 for any α ∈ GLn(k).
Now we will add n indeterminates y1, . . . , yn by Ore extensions. Firstly,

define σ1, δ1 : B
(α,β)
n → B

(α,β)
n by

σ1(g) = −g, σ1(xi) = xi

and

δ1(g) = 0, δ1(xi) = (α1j − β1j)g.

It is easy to check that σ1 is an endomorphism of B
(α,β)
n and δ1 is a σ1-

derivation. Thus we get the Ore extension B
(α,β)
n,1 = B

(α,β)
n [y1;σ1, δ1]. Define

∆(α,β),(λ,γ)(y1) = y1 ⊗ 1 + g ⊗ y1,

then B
(α,β)
n,1 [y1;σ1, δ1] is the Hopf group coalgebra Ore extension of Bn.

Then we define σ2, δ2 : B
(α,β)
n,1 → B

(α,β)
n,1 by

σ2(g) = −g, σ2(xi) = xi, σ2(y1) = −y1

and

δ2(g) = 0, δ2(xi) = (α2j − β2j)g, δ2(y1) = 0.

It is easy to check that σ1 is an endomorphism of B
(α,β)
n,1 and δ2 is a σ2-

derivation. Thus we get the Ore extension B
(α,β)
n,2 = B

(α,β)
n,1 [y1;σ1, δ1]. When

we define

∆(α,β),(λ,γ)(y2) = y2 ⊗ 1 + g ⊗ y2,

B
(α,β)
n,2 is also an Hopf group coalgebra Ore extension of Bn,1.

We continue the process by n times, then we will add n indeterminates and

get the Hopf group coalgebra A
(α,β)
n as in the example in [12].

4. Isomophism

In this section, we study the relations of two Hopf group coalgebra Ore
extensions. First we need to give the following lemma.

Lemma 4.1 ([1, Lemma 1.1]). Let A be a algebra, A[y;σ, δ] an Ore extension

of A and i : A → A[y;σ, δ] the inclusion morphism. Then for any algebra B,

any algebra morphism f : A → B and every element b ∈ B such that bf(a) =
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f(δ(a)) + f(σ(a))b for any a ∈ A, there exists a unique algebra morphism

f̄ : A[y;σ, δ] → B such that f̄(y) = b and the following diagram is commutative:

A

i

��

f
// B

A[y;σ, δ]

f̄

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈

Similarly, we can generalized this lemma to the cases of π-graded algebras:

Lemma 4.2. Let A={Aα}α∈π be a π-graded algebra, R={Rα=Aα[yα;σα, δα]}
the Ore extension of A, and i : A → R the inclusion morphism, where i = {iα :
Aα → Aα[yα;σα, δα]}. For any π-graded algebra B = {Bα}α∈π, f : A → B

algebra morphism, where f = {fα : Aα → Bα}α∈π and fα is an algebra

morphism. Then for any element b = {bα}α∈π ∈ B, if for any α ∈ π,

bαfα(aα) = fα(δα(aα)) + f(σα(aα))bα for any a = {aα} ∈ A, then there exists

a unique algebra morphism f̄ = {f̄α} : R → B such that f̄α(yα) = bα and the

following diagram is commutative:

Aα

iα

��

fα // B

Aα[yα;σα, δα]

f̄α

99
s
s
s
s
s
s
s
s
s
s
s

Proof. The proof is simple. By Lemma 4.1 we can get the result directly. �

Definition 4.3. Let A = {Aα} and A′ = {A′

α} be two Hopf group coalgebras,
we call f : A → A′, where f = {fα} and fα : Aα → A′

α, the morphism
of Hopf group coalgebra if for any α ∈ π, fα is algebra morphism, ∆′

α,βfαβ =

(fα⊗fβ)∆α,β and S′

αfα = fα−1Sα, where ∆,∆′, S, S′ are the comultiplications
and antipodes of A and A′ respectively.

Obviously we can see that this definition generalizes the notion of morphisms
of Hopf algebra, and when π = 1, it is the usual Hopf algebra morphism.

In order to simplify the notation and study the isomorphism of Hopf group
coalgebra-Ore extensions, we introduce the following definitions.

Definition 4.4. Let A = {Aα} be a Hopf group coalgebra. Denote r =
{rα}, σ = {σα}. A family of mappings δ = {δα} satisfying (3.11) is called
a r-coderivation. If δ is also a σ-derivation where σ is an algebra morphism
satisfying (3.9) and (3.10), then δ is called a 〈χ, r〉-derivation.

Notation. Denote the Hopf group coalgebra-Ore extension R = {Rα}α∈π by
R = {Rα = Aα(χ, rα, δα)}α∈π, where χ : A1 → k is a character, r = {rα}α∈π

is a family of group-like element of A and δ is a 〈χ, r〉-derivation.
Now we define an isomorphism of Hopf group coalgebra-Ore extensions.



340 DINGGUO WANG AND DAOWEI LU

Definition 4.5. Two Hopf group coalgebra-Ore extensions

R = {Rα = Aα(χ, rα, δα)}α∈π and R′ = {R′

α = A′

α(χ, r
′

α, δ
′

α)}α∈π

of Hopf group coalgebras A and A′ are said to be isomorphism if there is an
isomorphism of Hopf group coalgebras φ : R → R′ such that φ(A) = A′.

Remark. Actually the isomorphism of Hopf group coalgebras φ is a family of
isomorphism of algebras {φα : Aα → A′

α}α∈π and satisfies the conditions in
Definition 4.3.

Definition 4.6. A 〈χ, r〉-derivation δ = {δα} is inner, where r = {rα}α∈π if
there is a family of elements {dα}α∈π ∈ A such that for all a ∈ Aα, δα(a) =
σα(a)dα − dαa and ∆α,β(dαβ) = dα ⊗ 1 + rα ⊗ dβ .

Lemma 4.7. If δ is a 〈χ, r〉-derivation, then we have

ε(d1) = 0,

and

Sα(dα) = −(rα−1)−1dα−1 .

Proof. By Definition 4.6, ∆1,1(d1) = d1⊗1+r1⊗d1, then we have d1 = ε(d1)1+
ε(r1)d1. So by ε(r1) = 1 we get ε(d1) = 0. And ∆α,α−1(d1) = dα⊗1+rα⊗dα−1 ,

so 0 = ε(d1)1α−1 = Sα(dα) + Sα(rα)dα−1 = Sα(dα) + (rα−1)−1dα−1 , then we
get Sα(dα) = −(rα−1)−1dα−1 for any α ∈ π. �

Using the above lemma, we prove the following consequence for an inner
〈χ, r〉-derivation.

Proposition 4.8. Let R = {Rα=Aα(χ, rα, δα)}α∈π be a Hopf group coalgebra-

Ore extension of A. If δ = {δα} is an inner 〈χ, r〉-derivation, then R = {Rα =
Aα(χ, rα, δα)}α∈π is isomorphism to the Hopf group coalgebra-Ore extension

R = {Rα = Aα(χ, rα, 0)}α∈π.

Proof. Denote the indeterminates of {Aα(χ, rα, δα)}α∈π and {Aα(χ, rα, 0)}α∈π

by y = {yα}α∈π and y′ = {y′α}α∈π. Firstly we uniquely extend the inclu-
sion morphism i = {iα} : A → {Aα(χ, rα, 0)}α∈π to the algebra morphism
{Aα(χ, rα, δα)}α∈π → {Aα(χ, rα, 0)}α∈π by extending iα : Aα → Aα(χ, rα, 0)}
for any α ∈ π which is denoted by ī and īα such that the following diagram is
commutative:

Aα

��

iα // Aα(χ, rα, 0)

Aα(χ, rα, δα)

īα

77
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
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To see this, take {y′α − dα} ∈ {Aα(χ, rα, 0)}α∈π and define īα(yα) = y′α − dα.

Because δ = {δα} is inner, we have for all a ∈ Aα

iασα(a)̄iα(yα) + iαδα(a) = σα(a)(y
′

α − dα) + δα(a)

= σα(a)y
′

α − σα(a)dα + δα(a)

= σα(a)y
′

α − σα(a)dα + σα(a)dα − dαa

= σα(a)y
′

α − dαa

= (y′α − dα)a

= (y′α − dα)iα(a).

Then by Lemma 4.2, we complete the extension.
Similarly, the inclusion morphism j : A→{Aα(χ, rα, δα)}α∈π can be uniquely

extended to the algebra morphism j̄ : {Aα(χ, rα, 0)}α∈π → {Aα(χ, rα, δα)}α∈π.

By the uniqueness of extension, we get that ī is an algebra morphism and j̄ is
its inverse.

It is easy to verify that īα(Aα(χ, rα, δα)) ⊆ Aα(χ, rα, 0), and so we have con-
structed an algebra isomorphism from {Aα(χ, rα, δα)}α∈π to {Aα(χ, rα, 0)}α∈π

satisfying ī(A) = A.

By the definitions of an inner 〈χ, r〉-derivation and a Hopf group coalgebra-
Ore extension, we have the calculation

(̄iα ⊗ īβ)∆α,β(yαβ) = (̄iα ⊗ īβ)(yα ⊗ 1 + rα ⊗ yβ)

= ī(yα)⊗ 1 + rα ⊗ īβ(yβ)

= (y′α − dα)⊗ 1 + rα ⊗ (y′β − dβ)

= y′α ⊗ 1 + rα ⊗ y′β − dα ⊗ 1− rα ⊗ dβ

= y′α ⊗ 1 + rα ⊗ y′β −∆α,βdαβ

= ∆′

α,β(y
′

αβ)−∆′

α,β(dαβ)

= ∆′

α,β(y
′

αβ − dαβ)

= ∆′

α,β īαβ(yαβ).

And

īαSα(yα) = īα(−(rα−1 )−1yα−1)

= −(rα−1)−1(y′α−1 − dα−1)

= −(rα−1)−1y′α−1 + (rα−1)−1dα−1

= −(rα−1)−1y′α−1 − Sα(dα)

= S′

α(y
′

α)− S′

α(dα)

= S′

α(y
′

α − dα)

= S′

α īα(yα).

Thus we proves the proposition. �
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Now we can introduce and prove the main result in this section.

Theorem 4.9. Let R = {Aα(χ, rα, δα)}α∈π and R′ = {A′

α(χ
′, r′α, δ

′

α)}α∈π

be two Hopf group coalgebra-Ore extensions. If there exists a isomorphism

of Hopf group coalgebra φ : R → R′ such that χ′ = χφ−1, r′ = φ(r) and

δ′ = φδφ−1+ δ′′, where r = {rα}, r′ = {r′α}, δ = {δα}, δ
′ = {δ′α} and δ′′ is an

inner 〈χ′, r′〉-derivation of A′, then R is isomorphism to R′ as a Hopf group

coalgebra-Ore extension.

Proof. Denote the indeterminates of {Aα(χ, rα, δα)}α∈π and {A′

α(χ
′, r′α, δ

′

α)}α∈π

by y = {yα}α∈π and y′ = {y′α}α∈π. We will show that there exist extensions of
φ and φ−1, which are denoted by φ̄ and ¯φ−1, such that the following diagrams
are commutative:

Aα

��

φα // A′

α
// A′

α(χ
′, r′α, δ

′

α)

Aα(χ, rα, δα)

φ̄α

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

A′

α

��

φ−1

α // Aα
// Aα(χ, rα, δα)

A′

α(χ
′, r′α, δ

′

α)

¯φ−1
α

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

To prove this, we first have to show σ′

αφα = φασα, δ′αφα = φαδα, σαφ
−1 =

φ−1σ′

α and δαφ
−1 = φ−1δ′α. In fact, by the assumption, for all a ∈ Aα, we have

σ′

αφα(a) =
∑

(a)

χ′(φα(a)(1,1))φα(a)(2,α) =
∑

(a)

χ′(φα(a(1,1)))φα(a(2,α))

=
∑

(a)

χ(φ−1
α φα(a(1,1)))φα(a(2,α)) =

∑

(a)

χ(a(1,1))φα(a(2,α))

=
∑

(a)

φα(χ(a(1,1))φα(a(2,α))) = φασα(a).

Similarly for δ′αφα = φαδα. We can prove the other two equations directly by
δ′α = φαδαφ

−1
α .

Then we have

y′αφα(a) = σ′

α(φα(a))y
′

α + δ′α(φα(a)) = φασα(a)y
′

α + φαδα(a)

for all a ∈ Aα and

yαφ
−1
α (a′) = σα(φ

−1
α (a′))yα + δα(φ

−1
α (a′)) = (φ−1

α σ′

α(a
′))yα + φ−1

α δ′α(a
′)

for all a′ ∈ A′

α. So φ̄ and ¯φ−1 are extensions of φ and φ−1, respectively, such
that φ̄α(yα) = y′α and ¯φ−1

α(y
′

α) = yα. And by the uniqueness of the extensions,
we obtain that ¯φ−1 ◦ φ̄ = id and φ̄ ◦ ¯φ−1 = id.
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Using the assumption r′ = φ(r), we have

(φ̄α ⊗ φ̄β)∆α,β(yαβ) = (φ̄α ⊗ φ̄β)(yα ⊗ 1 + rα ⊗ yβ)

= y′α ⊗ 1 + φα(rα)⊗ y′β

= y′α ⊗ 1 + r′α ⊗ y′β

= ∆′

α,β(y
′

αβ)

= ∆′

α,βφ̄β(yαβ).

Similarly for ∆α,β
¯φ−1
αβ(y

′

αβ) = ( ¯φ−1
α ⊗ ¯φ−1

β )∆′

α,β(y
′

αβ). And

S′

αφ̄α(yα) = S′

α(y
′

α) = −(r′α−1)−1y′α−1

= φ̄α(−(rα−1 )−1)y′α−1

= φ̄α(−(rα−1 )−1yα−1)

= φ̄αSα(yα).

Similarly for ¯φ−1
α S′

α(y
′

α) = Sα
¯φ−1
α (y′α).

Finally, it is easily see that

φ̄α(Aα(χ, rα, δα)) ⊆ A′

α(χ
′, r′α, δ

′

α)

and
¯φ−1
αβ(A

′

α(χ
′, r′α, δ

′

α)) ⊆ φ̄α(Aα(χ, rα, δα)).

So we conclude that R is isomorphism to R′ as a Hopf group coalgebra-Ore
extension. �
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