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IDENTITIES FOR 3-CORE AND 5-CORE PARTITIONS

Yoon Kyung Park

Abstract. We apply modular function theory to find the relation among
t-core partitions. By using the generators of function field corresponding
to a certain modular group, we reprove the identities in [1] because their
relations are linear for t = 3 or 5.

1. Introduction

For a positive integer n, a partition of n is a non-increasing sequence of
positive integers whose sum is n. Let p(n) be the number of partitions of n
with the following generating function:

∞
∑

n=0

p(n)qn =

∞
∏

n=1

1

1− qn
=

q−
1
24

η(τ)
,

where τ is in the complex upper half plane H, η(τ) is Dedekind’s eta function
and q = e2πiτ . In a symmetric group Sn, a conjugacy class is the set of
permutations with a given cycle structure, and so they are in a natural 1-1
correspondence with the set of partitions of n.

There are various partition functions to give a condition to each part. One
of them is t-core partition.

The Ferres-Young diagram of a partition λ of n is a finite collection of nodes
arranged in left-justified rows with having λk nodes in kth row. The hook is
the set of nodes directly below, together with the set of nodes directly to the
right of, the (i, j) node, as well as the (i, j) node itself. For each node, the hook
number H(i, j) is defined as the total number of nodes on the (i, j) hook. A
partition λ is said to be a t-core if it has no hook numbers that are multiples
of t. For instance, the 3-core partition λ = (3, 1, 1) of 5 has the Ferres-Young
diagram:

• (5) • (2) • (1)
• (2)
• (1)
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Here the number in blank means hook number of each node. This is the
only 3-core partition of 5.

To introduce generating function of t-core partition, for |q| < 1 we use the
standard notation

(a; q)∞ :=

∞
∏

n=0

(1− aqn).

We denote f(−q) by

(1.1) f(−q) :=

∞
∑

n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞ = q−
1
24 η(τ).

Let at(n) be number of partitions of n which are t-cores. Then the generating
function for at(n) is given by [5]:

(1.2)

∞
∑

n=0

at(n)q
n =

f t(−qt)

f(−q)
.

With these definitions the followings are our main theorems:

Theorem 1. If a3(n) denotes the number of partitions of n that are 3-cores,
then

a3(4n+ 1) = a3(n).

Theorem 2. Let a5(n) denote the number of partitions of n that are 5-cores.
Then

a5(4n+ 3) = a5(2n+ 1) + 2a5(n).

Baruah and Berndt proved the above two t-core partition identities using the
formulas in Ramanujan’s notebooks [3] and [10] in 2007 ([1]). Hirschhorn and
Sellers generalized Theorem 1 using divisor function and found infinitely many
3-core partition identities ([6]). Berkovich and Yesilyurt found 7-core identities
by the help of Ramanujan’s identities like Berndt and Baruah ([2]). After then
Kim proved their result using modular form theory ([8]). Here we prove Theo-
rem 1 and 2 by means of modular equations. For two modular functions, there
always exists a modular equation by Ishida and Ishii’s theorem (Theorem 4),
if we find the modular group corresponding to these two functions. Especially,
when these functions are generating functions for some partition function, the
modular equation just found gives us some relation between partition functions
without any appeared identities in other papers or books. Since every t-core
partition derives its modularity, we always get their relations. Moreover we get
simpler form in case t = 3 and 5 because they are linear.

In §2 we review a brief modular function theory including Klein forms. We
give the proofs of Theorems 1 and 2 in §3 and §4, respectively.

Hereafter, we denote the generating functions of t-core partitions as follows:

gt,1(τ) := gt,1(q) :=

∞
∑

n=0

at(n)q
n =

f t(−qt)

f(−q)
,
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gt,s(τ) := gt,s(q) :=
f t(−qts)

f(−qs)
for an integer s ≥ 1

(:= gt,1(sτ))

and

gt,−1(τ) := gt,−1(q) :=
f t(qt)

f(q)
.

2. Preliminaries

We would like to state some necessary definitions and properties from the
theory of modular functions. Denote H∗ by H ∪Q ∪ {∞}.

Let Γ(1) = SL2(Z) be the full modular group. For any integer N ≥ 1, we
have congruence subgroups Γ(N), Γ1(N), Γ0(N) and Γ0(N) of Γ(1) consist-
ing of matrices

(

a b
c d

)

congruent modulo N to ( 1 0
0 1 ), (

1 ∗
0 1 ), (

∗ ∗
0 ∗ ) and ( ∗ 0

∗ ∗ ),
respectively. Then a congruence subgroup Γ acts on H∗ by linear fractional
transformations so that γ(τ) = (aτ + b)/(cτ + d) for γ =

(

a b
c d

)

∈ Γ, and the
quotient space Γ\H∗ becomes a compact Riemann surface with an appropriate
complex structure. By definition an element s of Q ∪ {∞} is called a cusp,
and two cusps s1, s2 are equivalent under Γ if there exists γ ∈ Γ such that
γ(s1) = s2. Then the equivalence class of a cusp s or its representative s is
called a cusp of Γ by abuse of terminology. Indeed, there exist at most finitely
many inequivalent cusps of Γ. Let s be any cusp of Γ, and let ρ ∈ SL2(Z) be
such that ρ(s) = ∞. We define the width of the cusp s in Γ\H∗ by the smallest
positive integer h satisfying ρ−1 ( 1 h

0 1 ) ρ ∈ {±1} · Γ. Then the width depends
only on the equivalence class of the cusp s under Γ and is independent of the
choice of ρ.

By a modular function with respect to a congruence subgroup Γ we mean a
C-valued function f(τ) of H satisfying the following three conditions:

(1) f(τ) is meromorphic on H,
(2) f(τ) is invariant under Γ, i.e., f ◦ γ = f for all γ ∈ Γ and τ ∈ H,
(3) f(τ) is meromorphic at all cusps of Γ.
The precise meaning of the last condition is as follows. For a cusp s for Γ, let

h be the width for s and ρ be an element of SL2(Z) such that ρ(s) = ∞. Since
(f ◦ρ−1)(τ +h) = (f ◦ρ−1 ( 1 h

0 1 ) ρ)(ρ
−1τ) = (f ◦ρ−1)(τ), f ◦ρ−1 has a Laurent

series expansion in qh = e2πiτ/h, namely for some integer n0, (f ◦ ρ−1)(τ) =
∑

n≥n0
anq

n
h with an0 6= 0. This integer n0 is called the order of f(τ) at the

cusp s and denoted by ordsf(τ). If ordsf(τ) is positive (respectively, negative),
then we say that f(τ) has a zero (respectively, a pole) at s. If a modular
function f(τ) is holomorphic on H and ordsf(τ) is greater than or equal to 0
for every cusp s, then we say that f(τ) is holomorphic on H∗. Since we may
identify a modular function with respect to Γ with a meromorphic function on
the compact Riemann surface Γ\H∗, any holomorphic modular function with
respect to some congruence subgroup Γ is a constant.
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Let A0(Γ) be the field of all modular functions with respect to Γ, and A0(Γ)Q
be the subfield of A0(Γ) in which the Fourier expansion of f(τ) has rational
coefficients. Then we may identify A0(Γ) with the field C(Γ\H∗) of all mero-
morphic functions of the compact Riemann surface Γ\H∗, and if f(τ) ∈ A0(Γ)
is nonconstant, then the field extension degree [A0(Γ) : C(f(τ))] is finite and is
equal to the total degree of poles of f(τ). Since we will consider the modular
functions with neither zeros nor poles on H, the total degree of poles of f(τ) is
−Σs ordsf(τ) where the summation runs over all the inequivalent cusps s at
which f(τ) has poles.

From now on we briefly review the Klein forms, which are mainly used in
this paper. We refer to [9] for more details. For any lattice L ⊂ C and z ∈ C,
we define the Weierstrass σ-function by

σ(z;L) = z
∏

ω∈L{0}

(

1−
z

ω

)

e
z
ω
+ 1

2 (
z
ω
)2

which is holomorphic with only simple zeros at all points z ∈ L. We further de-
fine the Weierstrass ζ-function by the logarithmic derivative of the Weierstrass
σ-function, i.e.,

ζ(z;L) =
σ′(z;L)

σ(z;L)
=

1

z
+

∑

z∈L−{0}

(

1

z − ω
+

1

ω
+

z

ω2

)

which is meromorphic with only simple poles at all points z ∈ L. It is easy to
see that the Weierstrass σ-function (respectively, the Weierstrass ζ-function)
is homogeneous of degree 1 (respectively, −1), that is, σ(λz;λL) = λσ(z;L)
(respectively, ζ(λz;λL) = λ−1ζ(z;L)) for any λ ∈ C×. Note that ζ′(z;L) =
−℘(z;L) where

℘(z;L) =
1

z2
+

∑

ω∈L−{0}

(

1

(z − ω)2
−

1

ω2

)

is the Weierstrass ℘-function. Since the Weierstrass ℘-function is an elliptic
function, namely ℘(z+ω;L) = ℘(z;L) for ω ∈ L, we obtain that d

dz (ζ(z+ω;L)−
ζ(z;L)) = 0 for any ω ∈ L. This means that ζ(z+ω;L)− ζ(z;L) depends only
on ω ∈ L, not on z ∈ C. Thus we may define η(ω;L) = ζ(z + ω;L) − ζ(z;L)
for all ω ∈ L. Let L = Zω1 + Zω2. For z = a1ω1 + a2ω2 with a1, a2 ∈ R we
define the Weierstrass η-function by

η(z;L) = a1η(ω1;L) + a2η(ω2;L).

Then it is easy to see that the Weierstrass η-function η(z;L) is well-defined, in
other words it does not depend on the choice of the basis {ω1, ω2} of L, and
η(z;L) is R-linear so that η(rz;L) = rη(z;L) for any r ∈ R. Note that since
the Weierstrass ζ-function is homogeneous of degree −1, so is the Weierstrass
η-function. We define the Klein form by

k(z;L) = e−η(z;L)z/2σ(z;L).
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Let a = (a1a2) ∈ R2 and τ ∈ H. We further define

ka(τ) = k(a1τ + a2;Zτ + Z)

which is also called the Klein form by abuse of terminology. Here we observe
that ka(τ) is holomorphic and nonvanishing on H if a ∈ R2 − Z2 and that the
Klein form is homogeneous of degree 1, i.e., k(λz;λL) = λk(z;L).

The Klein form satisfies the following properties (see [9]). Let γ =
(

a b
c d

)

∈

SL2(Z) and a = (a1 a2) ∈ R2 − Z2.

(K0) k−a(τ) = −ka(τ).

(K1) ka(γ(τ)) = (cτ + d)−1kaγ(τ).

(K2) For any b = (b1 b2) ∈ Z2 we have

ka+b(τ) = ε(a,b)ka(τ),

where ε(a,b) = (−1)b1b2+b1+b2 eπi(b2a1−b1a2).

(K3) For a = ( r
N

s
N ) ∈ 1

NZ2−Z2 and any γ ∈ Γ(N) with an integer N > 1,

ka(γ(τ)) = εa(γ) · (cτ + d)−1 · ka(τ),

where

εa(γ) = −(−1)(
a−1
N

r+ c
N

s+1)( b
N

r+ d−1
N

s+1) · eπi(br
2+(d−a)rs−cs2)/N2

.

(K4) Let τ ∈ H, z = a1τ + a2 with a = (a1 a2) ∈ Q2 − Z2, and further let
q = e2πiτ , qz = e2πiz = e2πia2e2πia1τ . Then

ka(τ) = −
1

2πi
eπia2(a1−1) · q

1
2a1(a1−1) · (1 − qz) ·

∞
∏

n=1

(1− qnqz)(1− qnq−1
z )

(1− qn)2

and ordqka(τ) = 1
2 〈a1〉(〈a1〉 − 1) where 〈a1〉 denotes the number such that

0 ≤ 〈a1〉 < 1 and a1 − 〈a1〉 ∈ Z.

(K5) Let f(τ) =
∏

a
k
m(a)
a (τ) be a finite product of Klein forms with a =

( r
N

s
N ) ∈ 1

NZ2 − Z2 for an integer N > 1, and let k = −
∑

a
m(a). Then

f(τ) is a modular function with respect to Γ(N) if and only if k = 0 and
{∑

a
m(a)r2 ≡

∑

a
m(a)s2 ≡

∑

a
m(a)rs ≡ 0 mod N if N is odd

∑

a
m(a)r2 ≡

∑

a
m(a)s2 ≡ 0 mod 2N,

∑

a
m(a)rs ≡ 0 mod N if N is even.

For positive integers N and r with 0 ≤ r ≤ N − 1, we write

(2.1) K r
N
(τ) =

N−1
∏

j=0

k( r
N

, j

N
)(τ).

By the help of the property (K2), for 0 ≤ r ≤ [N2 ] the functions K r
N

are
enough to derive our results.
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Before closing this section, we introduce the useful statements giving equa-
tions among generating functions for t-core partitions.

A complete set SΓ0(N) of representatives for the cusps of Γ0(N) is

(2.2)
SΓ0(N) = {

ac
c

∈ Q : c|N, 1 ≤ ac ≤ N, gcd(ac, N) = 1,

ac ≡ a′c (mod gcd(c,N/c)) ⇔ ac = a′c},

and the number of inequivalent cusps of Γ0(N) is

|SΓ0(N)| =
∑

c>0
c|N

φ(c)φ(N/c)

φ( N
gcd(c,N/c))

,

where φ(k) is Euler phi-function.
Since ( 1 0

N 1 ) ∈ Γ0(N) we can consider ∞ as 1
N and we discuss the width at

this cusp.

Lemma 3. Let a
c be a cusp of Γ0(N) with a, c ∈ Z, (a, c) = 1 and 0 < c|N .

We understand ±1
0 as ∞ equivalent to 1

N . Then the width h of a cusp a
c in

Γ0(N)\H∗ is

h =
N

(N, c2)
.

Proof. Note that the width h of cusp a
c in Γ0(N)\H∗ is the smallest positive

integer satisfying
(

a b
c d

)(

1 h
0 1

)(

a b
c d

)−1

=

(

∗ ∗
−c2h ∗

)

∈ {±1} · Γ0(N).

Hence c2h should be a multiple of N and N
(N,c2) is the smallest positive integer

such h. �

For the result of the general subgroup instead of Γ0(N), we may refer to [4].
Let F (X,Y ) be a polynomial such that

F (X,Y ) =
∑

i,j

Ci,jX
iY j ∈ Q[X,Y ]

and F (f1(τ), f2(τ)) = 0 for some two modular forms f1 and f2. The next
theorem is useful in knowing which coefficients of the modular equations are
zero in Fn(X,Y ).

Theorem 4 ([7]). For any congruence subgroup Γ′, let f1(τ), f2(τ) be non-

constants such that C(f1(τ), f2(τ)) = A0(Γ
′) with the total degree Dk of poles

of fk(τ) for k = 1, 2, and let

F (X,Y ) =
∑

0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X,Y ],
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be such that F (f1(τ), f2(τ)) = 0. Let SΓ′ be a set of all the inequivalent cusps

of Γ′, and for k = 1, 2,

Sk,0 = {s ∈ SΓ′ | fk(τ) has zeros at s},

and

Sk,∞ = {s ∈ SΓ′ | fk(τ) has poles at s}.

Further let

a =

{

0, if S1,∞ ∩ S2,0 = φ
−
∑

s∈S1,∞∩S2,0
ordsf1(τ), otherwise

and

b =

{

0, if S1,0 ∩ S2,0 = φ
∑

s∈S1,0∩S2,0
ordsf1(τ), otherwise.

Then we obtain the following assertions.

(1) CD2,a 6= 0. If further S1,∞ ⊂ S2,∞ ∪ S2,0, then CD2,j = 0 for any j 6= a.
(2) C0,b 6= 0. If further S1,0 ⊂ S2,∞ ∪ S2,0, then C0,j = 0 for any j 6= b.
(3) Ci,D1 = 0 for all i satisfying 0 ≤ i < |S1,0 ∩S2,∞| or D2 − |S1,∞ ∩S2,∞|

< i ≤ D2.

(4) Ci,0 = 0 for all i satisfying 0 ≤ i < |S1,0 ∩ S2,0| or D2 − |S1,∞ ∩ S2,0| <
i ≤ D2.

If we interchange the roles of f1(τ) and f2(τ), then we may obtain further

properties similar to (1) ∼ (4). Suppose further that there exist r ∈ R and

N,n1, n2 ∈ Z with N > 0 such that fk(τ + r) = ζnk

N fk(τ) for k = 1, 2, where

ζN = e2πi/N . Then we obtain the following assertion.

(5) n1i + n2j ≡/ n1D2 + n2a mod N ⇒ Ci,j = 0. Here note that n2b ≡
n1D2 + n2a mod N .

Proof. We refer to [7]. �

3. Proof of Theorem 1

Let g3,s(τ) be the modified generating function of 3-core partition defined in

§1. Hereafter, we denote h
(3)
1 (τ) (resp. h

(3)
4 (τ)) by

g3,1
g3,−1

(τ) (resp. q
g3,4
g3,−1

(τ)).

Lemma 5. The function h
(3)
1 (τ) and h

(3)
4 (τ) can be written as the following

Klein form quotients.

(1) h
(3)
1 (τ) =

g3,1
g3,−1

(τ) = ζ−1
12

K 2
12

K4
3
12

K2
1
12

K2
5
12

K 6
12

(τ),

(2) h
(3)
4 (τ) = q

g3,4
g3,−1

(τ) = ζ−1
6

K2
2
12

K2
3
12

K 1
12

K 5
12

K2
6
12

(τ).
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Proof. Observe the functions K r
12

(r = 1, 2, . . . , 11). (K4) means that

K r
12
(τ)

=

11
∏

j=0

k( r
12 ,

j

12 )
(τ)

= (−2πi)−12ζ11r+12
48 q

r(r−12)
24

11
∏

j=0

(1− ζj12q
r
12 )

∞
∏

n=1

(1− ζj12q
n+ r

12 )(1 − ζ−j
12 qn−

r
12 )

(1 − qn)2

= (−2πi)−12ζ11r+12
48 q

r(r−12)
24

∞
∏

n=1

(1− q12n−(12−r))(1 − q12n−r)

(1− qn)24

and (1.1) implies the followings:

h
(3)
1 (τ)

=

∞
∏

n=1

(1− q3n)3

(1− qn)
/
(1− (−q)3n)3

(1 − (−q)n)

=

∞
∏

n=1

(1− q12n−2)(1 − q12n−10)(1 − q12n−3)4(1− q12n−9)4

(1− q12n−1)2(1− q12n−11)2(1− q12n−5)2(1 − q12n−7)2(1− q12n−6)2
,

and

h
(3)
4 (τ) =

∞
∏

n=1

(1− q12n)3

(1− q4n)
/
(1− (−q)3n)3

(1− (−q)n)

=

∞
∏

n=1

(1− q12n−2)2(1 − q12n−10)2(1− q12n−3)2(1− q12n−9)2

(1− q12n−1)(1− q12n−11)(1− q12n−5)(1− q12n−7)(1− q12n−6)4
.

Hence by comparing their q-products we get the Klein form quotients for h
(3)
1 (τ)

and h
(3)
4 (τ). �

Proposition 6. Let h
(3)
1 (τ) and h

(3)
4 (τ) be the functions defined as before.

Then the modular function field with respect to Γ0(12) is generated by h
(3)
1 (τ)

and h
(3)
4 (τ) i.e.,

A0(Γ0(12)) = C(h
(3)
1 (τ), h

(3)
4 (τ)).

Proof. Assume that Γ′ be the congruence subgroup such that

A0(Γ
′) = C(h

(3)
1 (τ), h

(3)
4 (τ)).

First we show that Γ0(12) ⊂ Γ′. By (K5) and Lemma 5, Γ′ is a congruence
subgroup of level 12. Furthermore both functions have q-expansion, they are

in A0(Γ1(N)) because Γ1(N) = 〈Γ0(N), ( 1 1
0 1 )〉. Note that [Γ0(12) : Γ1(12)] =
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φ(12)/2 = 2 and γ3 = ( 5 2
12 5 ) is a nontrivial element of Γ0(12)/Γ1(12). Observe

g3,1
g3,−1

(τ) and q
g3,4
g3,−1

(τ),

K 1
12
(γ3τ) = ζ12(12τ + 5)−12K 5

12
(τ), K 5

12
(γ3τ) = ζ−1

12 (12τ + 5)−12K 1
12
(τ),

K 2
12
(γ3τ) = ζ4(12τ + 5)−12K 2

12
(τ), K 3

12
(γ3τ) = ζ−1

6 (12τ + 5)−12K 3
12
(τ),

and

K 4
12
(γ3τ) = ζ−1

4 (12τ + 5)−12K 4
12
(τ), K 6

12
(γ3τ) = ζ712(12τ + 5)−12K 6

12
(τ).

Hence

h
(3)
1 (γ3τ) = ζ−1

12

K 2
12
K4

3
12

K2
1
12

K2
5
12

K 6
12

(γ3τ)

= ζ−1
12

ζ4 · (ζ
−1
6 )4

(ζ12)2(ζ
−1
12 )2ζ712

·
K 2

12
K4

3
12

K2
1
12

K2
5
12

K 6
12

(τ)

= h
(3)
1 (τ)

and

h
(3)
4 (γ3τ) = ζ−1

6

K2
2
12

K2
3
12

K 1
12
K 5

12
K2

6
12

(γ3τ)

= ζ−1
6

(ζ4)
2 · (ζ−1

6 )2

ζ12 · ζ
−1
12 · (ζ712)

2
·

K 2
12
K4

3
12

K2
1
12

K2
5
12

K 6
12

(τ)

= h
(3)
4 (τ).

So, Γ0(12) ⊂ Γ′.

For the converse see the behaviors of h
(3)
1 (τ) and h

(3)
4 (τ) at each cusp for

Γ0(12). The following table gives us the exponents of the leading terms of
q-expansions at each cusp.

cusp ∞ 0 1
2

1
3

1
4

1
6

K 1
12

− 11
24 − 143

144 − 73
72 − 49

48 − 73
72 − 23

24

K 2
12

− 5
6 − 143

144 − 35
36 − 49

48 − 19
18 − 13

12

K 3
12

− 9
8 − 143

144 − 73
72 − 15

16 − 73
72 − 9

8

K 4
12

− 4
3 − 143

144 − 35
36 − 49

48 − 8
9 − 13

12

K 5
12

− 35
24 − 143

144 − 73
72 − 49

48 − 73
72 − 23

24

K 6
12

− 3
2 − 143

144 − 35
36 − 15

16 − 19
18 − 3

4

h
(3)
1 0 0 0 1

4 0 −1

h
(3)
4 1 0 0 0 0 −1



234 YOON KYUNG PARK

In the above table, for function f(τ) and the cusp a
c the number at correspond-

ing entry to f(τ) and a
c means a rational number r satisfying

f(ρ−1τ) = qr + · · · ,

where ρ−1 = ( a ∗
c ∗ ) ∈ SL2(Z) and ρ(ac ) = ∞ without considering a width at a

c .
Suppose that Γ0(12) is a proper subgroup of Γ′. Then there exists an element

σ ∈ Γ′\Γ0(12) such that σ(0) = 1
2 and σ must be

(

a 1
2a−1 2

)

for some a.
If gcd(2a− 1, 12) = 1, then there exist m and s ∈ Z such that (2a− 1) · s+

12a ·m = 1 because gcd(a, 2a− 1) = 1.
(

2a−1 −a
12m s

)

∈ Γ0(12) ⊂ Γ′ means that
(

2a− 1 −a
12m s

)

σ(∞) =

(

0 −1
1 12m+ s

)

(∞) = 0.

Hence ∞ is equivalent to 0 under Γ′. It is a contradiction.
If gcd(2a− 1, 12) = 3, then let k be the integer such that 2a− 1 = 6k − 3.

Since gcd(3k − 1, 6k − 3) = gcd(a, 2a− 1) = 1 we can choose integers s and n
satisfying (3k−1)s−(6k−3)n = 1 with s ≡ 2k−1 mod 4. For an even integer
s, it is possible to replace s with s + 6k + 3 because (3k − 1)(s + 6k − 3) −
(6k− 3)(n+3k− 1) = 1. For an odd integer s satisfying s ≡ 2k− 1+ 2 mod 4
choose s + 12k − 6 because (3k − 1)(s+ 12k − 6)− (6k − 3)(n + 6k − 2) = 1.
Since 6k − 3 − 3s = 3(2k − 1 − s) is a multiple of 12 put 12N = 6k − 3 − 3s
and r = 3k − 3n− 1. We get r · s− 12N · n = (3k − 1)s− (6k − 3)n = 1 and
( r n
12N s ) ∈ Γ′. Because

∞ = σ−1(
a

2a− 1
) = σ−1(

3k − 1

6k − 3
) = σ−1

((

r n
12N s

)

1

3

)

,

1
3 and ∞ are equivalent cusp in Γ′ and it is a contradiction. Therefore Γ′ =
Γ0(12). �

Then by Theorem 4, we get the equations.

Proof of Theorem 1. Before applying h
(3)
1 (τ) and h

(3)
4 (τ) to Theorem 4 we will

check where these two functions have pole or zero. Fortunately every Klein
forms have pole and zero only at cusps and all we need to know are behaviors
of products of Klein formsK r

12
at cusps of Γ0(12). First we find the inequivalent

cusps for Γ0(12). By help of (2.2) its inequivalent cusps are 0, 12 ,
1
3 ,

1
4 ,

1
6 and

∞. Using (K4) we get the table in the proof of Proposition 6 as order of K r
12

for 1 ≤ r ≤ 6.
Since the widths of cusps are followings:

cusp ∞ 0 1
2

1
3

1
4

1
6

width 1 12 3 4 3 1

the total degrees of poles of both h
(3)
1 (τ) and h

(3)
4 (τ) are 1. Therefore there

exists an equation

Φ(X,Y ) = C0,0 + C1,0X + C0,1Y + C1,1XY
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satisfying Φ(h
(3)
1 (τ), h

(3)
4 (τ)) = 0. Because we obtain a very simple equation, it

is easy to find the coefficients Ci,j for 0 ≤ i, j ≤ 1 by substituting q-expansions

of h
(3)
1 (τ) and h

(3)
4 (τ) directly. From Theorem 4 (1), C1,0 6= 1 and we may

assume C1,0 = 1. So, C1,1 = 0, C0,1 = −2, C0,0 = −1,

h
(3)
1 (τ) − 2h

(3)
4 (τ) − 1 = 0

and

g3,1(τ)− g3,−1(τ) = 2qg3,4(τ).

It yields that

a3(4n+ 1) = a3(n)

from coefficients of both sides in

1

2

(

∞
∑

n=1

a3(n)q
n −

∞
∑

n=1

(−1)na3(n)q
n

)

= q

∞
∑

n=1

a3(n)q
4n.

�

4. Proof of Theorem 2

The process to prove Theorem 2 is similar to one done in previous section.
First, we rewrite the quotients of functions g5,−1, g5,1, g5,2 and g5,4 as Klein

form products.

Lemma 7. If g5,s(τ) is the function defined in §1 for s = −1, 1, 2 or 4, then
their quotients are

(1)
g5,1
g5,−1

(τ) = ζ−3
20

K 2
20

K8
5
20

K 6
20

K2
1
20

K2
3
20

K2
7
20

K2
9
20

K2
10
20

(τ),

(2) q
g5,2
g5,−1

(τ) = ζ−3
20

K 2
20

K4
5
20

K 6
20

K 1
20

K 3
20

K 7
20

K 9
20

K2
10
20

(τ),

(3) q3
g5,4
g5,−1

(τ) = ζ−3
10

K2
2
20

K4
5
20

K 6
20

K 1
20

K 3
20

K 7
20

K 9
20

K 10
20

4
(τ).

Here K r
20
(τ) is a function defined in §2 for an integer r such that 0 ≤ r ≤ 19.

Proof.

K r
20
(τ) =

19
∏

j=0

k( r
20 ,

j

20 )(τ)

= (−2πi)−20ζ19r+20
80 q

r(r−20)
40

∞
∏

n=1

(1 − q20n−r)(1− q20n−(20−r))

(1 − qn)40
,

we rewrite the functions in the left hand side as

g5,1
g5,−1

(τ) =

∞
∏

n=1

(1− q5n)5

(1 − qn)
/
(1− (−q)5n)5

(1− (−q)n)
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=
∏

s=2,6
r=1,3,7,9

∞
∏

n=1

(1− q20n−s)(1 − q20n−(20−s))(1 − q20n−5)8(1− q20n−15)8

(1− q20n−r)2(1− q20n−(20−r))2(1− q20n−10)4
,

g5,2
g5,−1

(τ) =

∞
∏

n=1

(1− q10n)5

(1 − q2n)
/
(1− (−q)5n)5

(1− (−q)n)

=
∏

s=2,6
r=1,3,7,9

(1− q20n−s)(1 − q20n−(20−s))(1 − q20n−5)4(1− q20n−15)4

(1− q20n−r)(1− q20n−(20−r))(1 − q20n−10)4
,

and

g5,4
g5,−1

(τ) =

∞
∏

n=1

(1− q20n)5

(1 − q4n)
/
(1− (−q)5n)5

(1− (−q)n)

=
∏

s=2,6
r=1,3,7,9

∞
∏

n=1

(1− q20n−s)2(1− q20n−(20−s))2(1− q20n−5)4(1− q20n−15)4

(1− q20n−r)(1− q20n−(20−r))(1 − q20n−10)8
.

It is omitted to compare each product because it is very tedious. �

Next, we find the congruence subgroup corresponding to the function field

C(qα
g5,s
g5,−1

) for (α, s) = (0, 1), (1, 2) and (3, 4). Denote h
(5)
1 (τ) (resp. h

(5)
2 (τ)

and h
(5)
4 (τ) ) by

g5,1
g5,−1

(τ) (resp. q
g5,2
g5,−1

(τ) and q3
g5,4
g5,−1

(τ)).

Proposition 8. For the function h
(5)
1 (τ), h

(5)
2 (τ) and h

(5)
4 (τ),

C(h
(5)
1 (τ), h

(5)
2 (τ)) ⊂ A0(Γ0(20))

and

C(h
(5)
2 (τ), h

(5)
4 (τ)) ⊂ A0(Γ0(20)).

Proof. Let Γ1 (resp. Γ2 ) be the congruence subgroup corresponding to

C(h
(5)
1 (τ), h

(5)
2 (τ))

(resp. C(h
(5)
2 (τ), h

(5)
4 (τ))). Through Lemma 5 and (K5) both Γ1 and Γ2 con-

tain Γ(20). Moreover Γ1(20) ⊂ Γ1 ∩ Γ2 because q is invariant under ( 1 1
0 1 ) and

Γ1(20) = 〈Γ(20), ( 1 1
0 1 )〉. Consider that the factor Γ0(20)/Γ1(20) is of order 4

and generated by the coset ( 3 1
20 7 ) Γ1(20). So we use its action on the function

K r
20

for r = 1, 2, 3, 5, 6, 7, 9 and 10. Let γ be a modular action γ7 = ( 3 1
20 7 ).

The following calculation proves that Γ0(20) is a subset of both Γ1 and Γ2.










K 1
20

K 3
20

K 7
20

K 9
20











(γ7τ) = (20τ + 7)−20









0 ζ720 0 0
0 0 0 1
ζ720 0 0 0
0 0 ζ−1

5 0



















K 1
20

K 3
20

K 7
20

K 9
20











(τ),
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(

K 2
20

K 6
20

)

(γ7τ) = (20τ + 7)−20

(

0 ζ35
ζ−1
10 0

)(

K 2
20

K 6
20

)

(τ),

K 5
20
(γ7τ) = (20τ + 7)−20ζ58K 5

20
(τ),

K 10
20
(γ7τ) = (20τ + 7)−20ζ4K 10

20
(τ). �

Hereafter we use the same notation Γ1 and Γ2 to point to the congruence

subgroup corresponding to C(h
(5)
1 (τ), h

(5)
2 (τ)) and C(h

(5)
2 (τ), h

(5)
4 (τ)), respec-

tively.

Proof of Theorem 2. Note that the set of inequivalent cusps for Γ0(20) is SΓ0(20)

= {∞, 0, 12 ,
1
4 ,

1
5 ,

1
10}. Then we may choose the sets of inequivalent cups for Γ1

and Γ2 so that they are contained in SΓ0(20). Like the table in proof of Propo-
sition 6 we investigate the behaviors of the functions K r

20
(r = 1, 2, 3, 5, 6, 7, 9

and 10), h
(5)
1 (τ), h

(5)
2 (τ) and h

(5)
4 (τ):

cusp ∞ 0 1
2

1
4

1
5

1
10

K 1
20

− 19
40 − 133

80 − 67
20 − 67

40 − 133
80 − 59

40

K 2
20

− 9
10 − 133

80 − 33
20 − 17

10 − 137
80 − 33

20

K 3
20

− 51
40 − 133

80 − 67
40 − 67

40 − 137
80 − 71

40

K 5
20

− 15
8 − 133

80 − 67
40 − 67

40 − 25
16 − 15

8

K 6
20

− 21
10 − 133

80 − 33
20 − 17

10 − 133
80 − 37

20

K 7
20

− 91
40 − 133

80 − 67
40 − 67

40 − 137
80 − 71

40

K 9
20

− 99
40 − 133

80 − 67
40 − 67

40 − 133
80 − 59

40

K 10
20

− 5
2 − 133

80 − 33
20 − 17

10 − 25
16 − 5

4

h
(5)
1 0 0 0 0 3

4 −3

h
(5)
2 1 0 0 0 1

4 −2

h
(5)
4 3 0 0 0 0 −3

By Lemma 3, the widths at ∞, 15 and 1
10 are 1, 4 and 1 respectively. The both

widths at ∞ and 1
10 are 1 because the width for Γ1 or Γ2 is a positive integer

less than one for Γ0(20) at same cusp. Let h be the width at 1
5 for Γ1 or Γ2.

Since 4 is the one at 1
5 for Γ0(20), 1 ≤ h ≤ 4. The fact that h

(5)
2 (τ) is the

element of A0(Γ1) and A0(Γ2) means that

qn0

h = (q
1
h )n0 = q

1
4

if we write an integer n0 as the order at 1
5 with considering its width. Hence h

must be 4. Therefore with regards to width at each cusps,

cusp ∞ 0 1
2

1
4

1
5

1
10

h
(5)
1 0 0 0 0 3 −3

h
(5)
2 1 0 0 0 1 −2

h
(5)
4 3 0 0 0 0 −3
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we find the equation of them. For the convenience, write h
(5)
1 (resp. h

(5)
2 and

h
(5)
4 ) as h1 (resp. h2 and h4).
Through Theorem 4 we get two equations:

(4.1) h2
1 − 2h1h2 − h1 − 4h3

2 = 0,

(4.2) h3
2 − 2h2h4 − 4h2

4 − h4 = 0

By adding four times of (4.1) to (4.2), we obtain that

h2
1 − 16h2

4 − 4h2 − h1 − 8h2h4 − 2h1h2 = (h1 + 4h4)(h1 − 4h4 − 1 + 2h2) = 0.

(h1+4h4)(τ) is a modular function with respect to Γ0(20) and (h1+4h4)(
1
5 ) 6= 0

means that it is a nonzero modular function. So it might have only finite zeros.
Hence the modular function h1 − 4h4 − 1 + 2h2 have infinitely many zeros in
H and it is identically zero.

h1(τ)− 4h4(τ) − 1 + 2h2(τ) = 0

⇔ g5,1(τ) − g5,−1(τ) + 2qg5,2(τ) = 4q3g5,4(τ)

⇔

∞
∑

n=1

a5(n)q
n +

∞
∑

n=1

(−1)na5(n)q
n + 2

∞
∑

n=1

a5(n)q
2n+1 = 4

∞
∑

n=1

a5(n)q
4n+3.

Hence our second theorem is proved. �
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