DOI QR코드

DOI QR Code

A Study on Slip Behavior of Fiber Preform by High Speed Resin Flow in High Pressure Resin Transfer Molding

고압 RTM 공정에서 고속 수지 유동에 의한 섬유 보강재의 변형 거동에 관한 연구

  • 안종무 (한국기계연구원 부설 재료연구소 복합재료연구센터) ;
  • 성동기 (한국기계연구원 부설 재료연구소 복합재료연구센터) ;
  • 이원오 (한국기계연구원 부설 재료연구소 복합재료연구센터) ;
  • 엄문광 (한국기계연구원 부설 재료연구소 복합재료연구센터) ;
  • 최진호 (국립 경상대학교 기계공학부)
  • Received : 2013.12.04
  • Accepted : 2014.02.06
  • Published : 2014.02.28

Abstract

This paper presents the slip behavior of composite fabrics by high speed resin flow in high pressure resin transfer molding. In order to observe the fiber deformation behavior, we constructed the measuring equipment for friction coefficient between fiber and mold, and the monitoring system for deformation of fiber preform in high-pressure RTM process. Coulomb friction coefficient and hydrodynamic friction coefficient between fiber preform and mold were measured and the external force induced by fluid flow causing the deformation of fiber preform was measured. Friction force calculated by friction coefficient and the external force upon fiber deformation were compared, which showed that preform deformation occurred when the external force was bigger than the friction force. The slip behavior of the fiber preform was mainly influenced by the volume fraction of fiber preform and the friction coefficient.

본 연구에서는 고압 RTM 공정에서 고속 수지 유동에 의한 섬유 보강재의 변형 거동에 관한 연구를 진행하였다. 이를 위해 섬유와 금형의 마찰계수 측정 장치와 고압 RTM 공정을 모사하여 preform 변형을 평가하는 장치를 구축하였다. 마찰계수 측정 장치를 통해 금형-섬유 간 Coulomb 마찰계수와 수력학적 마찰 계수를 측정하였고, preform 변형 평가 장치를 통해 preform의 변형이 발생할 때의 유체에 의해 작용하는 외력의 힘을 측정하였다. 마찰계수를 이용하여 마찰력을 구하고 외력과 비교하여 직물의 슬립(slip) 여부를 판별할 수 있었다. 유체에 의해 섬유에 작용하는 외력이 섬유와 금형 사이의 마찰력보다 커지게 되면 직물이 움직이는 것으로 관찰 되었으며, 이는 섬유의 체적률과 마찰계수에 주로 영향을 받는 것으로 나타났다.

Keywords

References

  1. Kim, K.S., Bae, K.M., Oh, S.Y., Seo, M.K., Kang, C.G., and Park, S.J., "Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles," Elastomers and Composites, Vol. 47, No. 1, 2012, pp. 65-74. https://doi.org/10.7473/EC.2012.47.1.065
  2. Jung, J.W., Kim, S.H., Kim, S.H., Park, J.K., and Lee, W.I., "Research on the Development of the Properties of PLA Composites for Automotive Interior Parts", Journal of the Korean Society for Composite Materials, Vol. 24, No. 3, 2011, pp. 1-5. https://doi.org/10.7234/kscm.2011.24.3.001
  3. Gong, J.D., "A Report of Comprehensive Technological Development of Innovative, Next-Generation, Low-Pollution Vehicles Part I," Auto Journal, Vol. 31, No. 3, 2009, pp. 76-80.
  4. Lee, D.G., Composite Materials, Hongrung Pub. Co., Korea, 2007.
  5. Erich Fries, "Light Weight and HP-RTM," Proceeding of the Korean Society for Composite Materials, Seoul, Korea, May. 2013, pp. 17-18.
  6. Choi, C.H., "Current Development Status of Polymer Composites for Automobiles," Proceeding of the Korean Society for Composite Materials, Seoul, Korea, May 2013, pp. 15-16.
  7. Daniels, W.W., "Relationship Between Fiber Properties and Fabric Wrinkle Recovery," Textile Research Journal, Vol. 30, No. 9, 1961, pp. 656-661.
  8. Joakim Schon, "Coefficient of Friction of Composite Delamination Surfaces," Wear, Vol. 237, No. 1, 2000, pp. 77-89. https://doi.org/10.1016/S0043-1648(99)00315-4
  9. Joakim Schon, "Coefficient of Friction and Wear of a Carbon Fiber Epoxy Matrix Composite," Wear, Vol. 257, No. 3-4, 2004, pp. 395-407. https://doi.org/10.1016/j.wear.2004.01.008
  10. Gorczyca Jennifer, A Study of Frictional Behavior of a Plainweave Fabric during the Thermostamping Process, Ph.D. Thesis, University of Massachusetts Lowell, USA, 2004.
  11. Rauch, J.Y., Roisselot, C., and Martin, N., "Structure and Coposition of TiAlN Thin Films Sputter Deposited Using a Composite Metallic Target," Surface and Coatings Technology, Vol. 157, No. 2-3, 2002, pp. 138-143. https://doi.org/10.1016/S0257-8972(02)00146-9

Cited by

  1. Flow-induced deformation of unidirectional carbon fiber preform during the mold filling stage in liquid composite molding process 2018, https://doi.org/10.1177/0021998317723693
  2. 탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가 vol.16, pp.5, 2014, https://doi.org/10.14775/ksmpe.2017.16.5.157
  3. 복합재료 유체 저장 탱크 구조 설계를 위한 RTM 공법 수지 유동 해석 vol.13, pp.1, 2014, https://doi.org/10.20910/jase.2019.13.1.69