DOI QR코드

DOI QR Code

The Effects of Several Halophytes on Insulin Resistance in Otsuka Long-evans Tokushima Fatty Rats

OLETF 쥐에서 칠면초와 세발나물의 인슐린 저항성 개선 효과

  • Cho, Jeong-Yong (Department of Food Science & Biotechnology and Solar Salt Research Center, Mokpo National University) ;
  • Huang, Zhangjun (Department of Food Science & Biotechnology and Solar Salt Research Center, Mokpo National University) ;
  • Park, Sun-Young (Department of Food Science & Biotechnology and Solar Salt Research Center, Mokpo National University) ;
  • Park, Kyung-Hee (Department of Food Science & Biotechnology and Solar Salt Research Center, Mokpo National University) ;
  • Pai, Tong-Kun (Department of Food and Nutrition, Anyang University) ;
  • Kim, So-Young (Division of Functional Food & Nutrition, National Academy of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Kim, Haeng-Ran (Division of Functional Food & Nutrition, National Academy of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Ham, Kyung-Sik (Department of Food Science & Biotechnology and Solar Salt Research Center, Mokpo National University)
  • 조정용 (목포대학교 식품공학과 및 천일염연구센터) ;
  • ;
  • 박선영 (목포대학교 식품공학과 및 천일염연구센터) ;
  • 박경희 (목포대학교 식품공학과 및 천일염연구센터) ;
  • 배동근 (안양대학교 식품영양학과) ;
  • 김소영 (농촌진흥청 국립농업과학원) ;
  • 김행란 (농촌진흥청 국립농업과학원) ;
  • 함경식 (목포대학교 식품공학과 및 천일염연구센터)
  • Received : 2013.09.17
  • Accepted : 2013.12.02
  • Published : 2014.02.28

Abstract

We evaluated preventive effects of Suaeda japonica (SJ) and Spergularia marina Griseb (SMG) on the insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. The 10-week old OLETF rats were fed diets containing 3% (w/w) SJ and SMG for 18 weeks. Fasting blood glucose levels in SJ and SMG groups, measured using the oral glucose tolerance test, were lower than that of the control rats. The SMG group showed significantly lower levels of insulin, glycated hemoglobin, triglyceride, and total cholesterol than the control group. In addition, these levels were relatively lower in the SJ group than those in the control rats. The SJ and SMG groups had relatively lower protein levels of nuclear factor-kappa B (NF-${\kappa}B$) p65 in adipose tissue and serine phosphorylated insulin receptor substrate 1 (IRS-1) in skeletal muscle than the control group. These results suggest that SJ and SMG prevent insulin resistance and SMG in particular reduces blood triglyceride and total cholesterol levels.

본 연구에서는 염생식물인 칠면초와 세발나물의 인슐린 저항성을 개선하는 효과를 조사하였다. 본 실험에 사용한 OLETF쥐는 CCK-1 수용체의 결함으로 인해 인슐린 저항성을 걸쳐 제 2형 당뇨병이 유발되는데, 인슐린 저항성이 진행되는 10주령부터 28주령이 될 때까지 칠면초와 세발나물을 18주 동안 섭취시켰다. 염생식물식이군들의 체중이나 공복혈당 변화는 식이기간 동안 전반적으로 대조군과 유의적인 차이를 보이지 않았다. Oral glucose tolerance test에서 염생식물 섭취가 당 내성을 개선하는 효과를 보였으나 그 혈당 변화를 면적으로 환산하였을 때 각 식이군들 간의 유의적인 차이는 관찰되지 않았다. 혈중 insulin 및 HbA1c 수치는 유의하게 낮은 수치를 보였으며, adiponectin 수치는 높고 leptin과 ghrelin 수치는 낮았으나 현저한 차이는 관찰되지 않았다. 세발나물식이군의 혈중 중성지질과 총 cholesterol 수치는 대조군에 비해 유의적으로 더 낮았다. 혈중 지질산화물 함량은 각 식이군 간 유의차가 관찰되지 않았으나 염생식물식이군에서 더 낮은 경향을 보였으며, NF-${\kappa}B$ p65는 지방조직에서 유의적으로 낮은 발현량을 보였다. 또한 두 염생식물식이군에서 인슐린 신호전달의 negative regulator인 $pIRS1^{Ser307}$의 발현량은 대조군에 비해 더 낮음을 확인하였다. 그러므로 칠면초와 세발나물은 생후 성장하면서 인슐린 저항성이 생기는 OLETF쥐의 인슐린 저항성을 현저하게 줄여주지는 못하였으나 그 개선 효과는 있는 것으로 시사되며, 두 염생식물의 급여 기간을 늘려 제 2형 당뇨병을 예방하는 효과에 대한 섬세한 검토가 보완되어야 할 것으로 사료된다.

Keywords

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33: S62-S69 (2010) https://doi.org/10.2337/dc10-S062
  2. Eyre H, Kahn R, Robertson RM. Preventing cancer, cardiovascular diseases, and diabetes. Diabetes Care 27: 1812-1824 (2004) https://doi.org/10.2337/diacare.27.7.1812
  3. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes 1: 68-75 (2010) https://doi.org/10.4239/wjd.v1.i3.68
  4. Gougeon R. Insulin resistance of protein metabolism in type 2 diabetes and impact on dietary needs: A review. Can. J. Diabetes 37: 115-120 (2013) https://doi.org/10.1016/j.jcjd.2013.01.007
  5. Cuerda C, Luengo LM, Valero MA, Vidal A, Burgos R, Calvo FL, Martínez C. Antioxidants and diabetes mellitus: Review of the evidence. Nutr. Hosp. 26: 68-78 (2011)
  6. Kim SS, Son SM. Oxidative stress and cell dysfunction in diabetes: Role of ROS produced by mitochondria and NAD(P)H oxidase. Korean Diabetes J. 32: 389-398 (2008) https://doi.org/10.4093/kdj.2008.32.5.389
  7. Singh RB, Choudhury J, Meester FD, Wilson DW. Development of the Mediterranean soup for enteral nutrition and for prevention of cardiovascular diseases. Open Nutraceut. J. 5: 90-98 (2012) https://doi.org/10.2174/1876396001205010090
  8. Lokhande VH, Suprasanna P. Prospects of halophytes in understanding and managing abiotic stress tolerance. pp. 29-56. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Parvaiz A, Prasad, MNV. (eds.). Springer, New York (2012)
  9. Parida AK, Das AB. Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Safety 60: 324-349 (2005) https://doi.org/10.1016/j.ecoenv.2004.06.010
  10. Ksouri R, Ksouri WM, Jallali I, Debez A, Magne C, Hiroko I, Abdelly C. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 32: 289-326 (2012) https://doi.org/10.3109/07388551.2011.630647
  11. Lee HJ, Kim YA, Ahn JW, Lee BJ, Moon SG, Seo YW. Screening of peroxynitrite and DPPH radical scavenging activities from salt marsh plants. Korean J. Biotechnol. Bioeng. 19: 57-61 (2004)
  12. Lee BM, Shim SI, Lee SK, Kang BH, Chung IM, Kim KH. Physiological response on saline tolerance between halophytes and glycophytes. Korean J. Environ. Agr. 18: 61-65 (1999)
  13. Lee YS, Lee SH, Kim BK, Oguchi K, Shin KH. Inhibitory effects of isorhamnetin-3-O-${\beta}$-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol. Pharm. Bull. 28: 916-918 (2005) https://doi.org/10.1248/bpb.28.916
  14. Ha JA, Lee SH, Kim HJ, Lee JY. The role of Salicornia herbacea in ovariectomy-induced oxidative stress. Biol. Pharm. Bull. 29: 1305-1309 (2006) https://doi.org/10.1248/bpb.29.1305
  15. Kong CS, Kim YA, Kim MM, Park JS, Kim JA, Kim SK, Lee BJ, Nam YW. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol. in Vitro 22: 1742-1748 (2008) https://doi.org/10.1016/j.tiv.2008.07.013
  16. Park SH, Kim KS. Isolation and identification of antioxidant flavonoids from Salicornia herbacea L. J. Korean Soc. Appl. Biol. Chem. 47: 120-123 (2004)
  17. Chung YC, Chun HK, Yang JY, Kim JY, Han EH, Kho YH, Jeong HG. Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch. Pharm. Res. 28: 1122-1126 (2005) https://doi.org/10.1007/BF02972972
  18. Kim JY, Cho JY, Ma YK, Park KY, Lee SH, Ham KS, Lee HJ, Park KH, Moon JH. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 125: 55-62 (2011) https://doi.org/10.1016/j.foodchem.2010.08.035
  19. Kim JA, Choo YS, Lee IJ, Bae JJ, Kim IS, Choo BH, Song SD. Adaptations and physiological characteristics of three Chenopodiaceae species under saline environments. Korean J. Ecol. 25: 101-107 (2002) https://doi.org/10.5141/JEFB.2002.25.2.101
  20. Choi JI, Kim YJ, Kim JH, Song BS, Yoon Y, Byun MW, Kwon JH, Chun SS, Lee JW. Antioxidant activities of the extract fractions from Suaeda japonica. J. Korean Soc. Food Sci. Nutr. 38: 131-135 (2009) https://doi.org/10.3746/jkfn.2009.38.2.131
  21. Kim JH, Song JY, Lee JM, Oh SH, Lee HJ, Choi HJ, Go JM, Kim YH. A study on physiochemical property of Salicornia herbacea & Suaeda japonica. J. Fd. Hyg. Safety 25: 170-179 (2010)
  22. Kim JS, Lee SH, Son EM, Pan X, Kim YA, Lee GS, Seo YW, Lee BJ. Phytochemical constituents of Suaeda japonica Makino. J. Crop Sci. 50: 208-210 (2005)
  23. Hayakawa K, Agarie S. Physiological roles of betacyanin in a halophyte, Suaeda japonica Makino. Plant Prod. Sci. 13: 351-359 (2010) https://doi.org/10.1626/pps.13.351
  24. Cho JY, Yang X, Park KH, Park HJ, Park SY, Moon JH, Ham KS. Isolation and identification of antioxidative compounds from Suaeda japonica and their antioxidative activities. Food Sci. Biotechnol. 22: 1547-1557 (2013) https://doi.org/10.1007/s10068-013-0250-2
  25. Heo BK, Park YJ, Park YS, Im MH, Oh KT, Cho JY. Distribution status, physicochemical composition, and physiological activity of Spergularia marina cultivated in the western region in Jeon-Ra-Nam-Do. Korean J. Commun. Living Sci. 20: 181-191 (2009)
  26. Hajnal A, Covasa M, Bello NT. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289: R1675-R1686 (2005) https://doi.org/10.1152/ajpregu.00412.2005
  27. Reeves PG, Nielsen FH, Fahey FC Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123: 1939-1951 (1993)
  28. Ledwozyw A, Michalak J, Stepian A, Kadziolka A. The relationship between plasma TG, cholesterol, total lipid peroxidation product during human atherosclerosis. Clin. Chim. Acta 155: 272-284 (1986)
  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 284-254 (1976)
  30. Hong EG, Noh HL, Lee SK, Chung YS, Lee KW, Kim HM. Insulin and glucagon secretions, and morphological change of pancreatic islets in OLETF rats, a model of typ 2 diabetes. J. Korean Med. Sci. 17: 34-40 (2002) https://doi.org/10.3346/jkms.2002.17.1.34
  31. Lind M, Oden A, Fahlen M, Eliasson B. A systematic review of HbA1c variables used in the study of diabetic complications. Diabetes Metabol. Syndr.: Clin. Res. Rev. 2: 282-293 (2008) https://doi.org/10.1016/j.dsx.2008.04.006
  32. Krishnamurti U, Steffes MW. Glycohemoglobin: a primary predictor of the development or reversal of complications of diabetes mellitus. Clin. Chem. 47: 1157-1165 (2001)
  33. Muoio DM, Newgard CB. Molecular and metabolic mechanisms of insulin resistance and ${\beta}$-cell failure in type 2 diabetes. Mol. Cell Biol. 9: 193-205 (2008)
  34. Hossain MA, Kitagaki S, Nakano D, Nishiyama A, Funamoto Y, Matsunaga T, Tsukamoto I, Yamaguchi F, Kamitori K, Dong Y, Hirata Y, Murao K, Toyoda Y, Tokuda M. Rare sugar D-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochem. Biophys. Res. Commun. 405: 7-12 (2011) https://doi.org/10.1016/j.bbrc.2010.12.091
  35. Sheng TX, Yang KJ. Adiponectin and its association with insulin resistance and type 2 diabetes. J. Genet. Genomics 35: 321-326 (2008) https://doi.org/10.1016/S1673-8527(08)60047-8
  36. Satoh N, Naruse M, Usui T, Tagami T, Suganami T, Yamada K, Kuzuya H, Shimatsu A, Ogawa Y. Leptin-to-adiponectin ratio as a potential atherogenic index in obese 2 diabetic patients. Diabetes Care 27: 2488-2490 (2004) https://doi.org/10.2337/diacare.27.10.2488
  37. Weyer C, Funahashi T, Tanaka S, Hotta K, matsuzawa Y, Pratley RE, Tataranni PA. hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86: 1930-1935 (2001) https://doi.org/10.1210/jcem.86.5.7463
  38. Munzberg H, Bjornholm M, Bates SH, Myers MG. Leptin receptor action and mechanism of leptin resistance. Cell. Mol. Life Sci. 62: 642-652 (2005) https://doi.org/10.1007/s00018-004-4432-1
  39. Myers MG, Cowley MA, Munzberg H. Mechanisms of leptin action and leptin resistance. Ann. Rev. Physiol. 70: 537-556 (2008) https://doi.org/10.1146/annurev.physiol.70.113006.100707
  40. Tomomi M, Masamistu N, Masanari M, Yakari D, Muhtashan SM, Muneki T, Nozoe S, Hsoda H, Kangawa K, Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J. Clin. Endocrinol. Metab. 87: 240-244 (2002) https://doi.org/10.1210/jcem.87.1.8129
  41. Ishii S, Kamegai J, Tamura H, Shimizu T, Sugihara H, Oikawa S. Role of ghrelin in streptozotocin-induced diabetic hyperphagia. Endocrinol. 143: 4934-4934 (2002) https://doi.org/10.1210/en.2002-220612
  42. Borggrev SE, De Vries R, Dullaart RPF. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin: cholesterol acyltransferase and lipid transfer proteins. Eur. J. Clin. Invest. 33: 1051-1069 (2003) https://doi.org/10.1111/j.1365-2362.2003.01263.x
  43. Ginberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch. Med. Res. 36: 232-240 (2005) https://doi.org/10.1016/j.arcmed.2005.01.005
  44. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Rad. Biol. Med. 50: 567-575 (2011) https://doi.org/10.1016/j.freeradbiomed.2010.12.006
  45. Mizuno T, Matsui H, Imamura A, Numaguchi Y, Sakai K, Murohara T, Okumura K. Insulin resistance increases circulating malondialdehyde-modified LDL and impairs endothel. Int. J. Cardiol. 97: 455-461 (2004) https://doi.org/10.1016/j.ijcard.2003.10.035
  46. Rial NS, Choi K, Ngugen T, Snyder B, Slepian MJ. Nuclear factor kappa B (NF-${\kappa}B$): A novel cause for diabetes, coronary artery disease and cancer initiation and promotion? Med. Hypotheses 78: 29-32 (2012) https://doi.org/10.1016/j.mehy.2011.09.034
  47. Danielsson A, Freddrik HN, Stralfors P. Phosphorylation of IRS1 at serine 307 and serine 312 in response to insulin in human adipocytes. Biochem. Biophys. Res. Commun. 342: 1183-1187 (2006) https://doi.org/10.1016/j.bbrc.2006.02.075
  48. Hilder TL, Janet CL. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle. FEBS Lett. 553: 63-67 (2003) https://doi.org/10.1016/S0014-5793(03)00972-4

Cited by

  1. Quality Characteristics and Antioxidant Activities of Noodles added with Spergularia marina L. Griseb Powder vol.27, pp.1, 2017, https://doi.org/10.17495/easdl.2017.2.27.1.50
  2. Quality characteristics of cookies added with Spergularia marina Griseb powder vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.211
  3. Comparison of the Biological Activities of Electrodialysis-desalted Bioactive Compounds from the Halophyte Suaeda japonica vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0124
  4. A phenyl lipid alkaloid and flavone C-diglucosides from Spergularia marina vol.25, pp.1, 2016, https://doi.org/10.1007/s10068-016-0009-7
  5. Quality Properties of Sponge Cake with Added Spergularia marina griseb powder vol.31, pp.1, 2016, https://doi.org/10.7318/KJFC/2016.31.1.081
  6. Changes in Antioxidant and Cancer Cell Growth Inhibitory Activities of Spergularia marina Griseb Extract according to Different Cooking Methods vol.33, pp.6, 2017, https://doi.org/10.9724/kfcs.2017.33.6.673