DOI QR코드

DOI QR Code

The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea

광양만에서 춘계와 하계 영양염류 첨가가 식물플랑크톤군집의 성장에 미치는 영향

  • Bae, Si Woo (Korea Institute of Ocean Science and Technology/South Sea Institute) ;
  • Kim, Dongseon (Ocean Circulation and Climate Research, KIOST) ;
  • choi, Hyun-Woo (Ocean Data & Cilimate Research Department, KIOST) ;
  • Kim, Young Ok (Korea Institute of Ocean Science and Technology/South Sea Institute) ;
  • Moon, Chang Ho (Departmaent of Oceanography, Pukyong National University) ;
  • Baek, Seung Ho (Korea Institute of Ocean Science and Technology/South Sea Institute)
  • 배시우 (한국해양과학기술원 남해특성연구부) ;
  • 김동선 (한국해양과학기술원 해양순환 기후연구부) ;
  • 최현우 (한국해양과학기술원 해양과학데이터센터) ;
  • 김영옥 (한국해양과학기술원 남해특성연구부) ;
  • 문창호 (부경대학교 해양학과) ;
  • 백승호 (한국해양과학기술원 남해특성연구부)
  • Received : 2013.11.22
  • Accepted : 2014.02.07
  • Published : 2014.02.28

Abstract

In order to estimate the effect of nutrients addition for phytoplankton growth and community compositons in spring and summer season, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Nutrient additional experiments were also conducted to identify any additional nutrient effects on phytoplankton assemblage using the surface water for the assay. Bacillariophyceae occupied more than 90% of total phytoplankton assembleges. Of these, diatom Eucampia zodiacus and Skeletonema costatum-like species was mainly dominated in spring and summer, respectively. Here, we can offer the season why the two diatom population densities were maintained at high levels in both seasons. First, light transparency of spring season in the euphotic zone was greatly improved in the bay. This improvement is one of important factor as tigger of increase in E. zodiacus population. Second, low salinity and high nutrient sources supplied by Seomjin River discharge are a main cue for strong bottom-up effects on S. costatum-like species during the summer rainy season. Based on the algal bio-assays, although maximum growth rate of phytoplankton communities at inner bay (St.8) were similar to those of outer bay (St.20), half-saturation constant ($K_s$) for phosphate at outer bay was slightly lower than those of inner bay. This implied that adapted cells in low nutrient condition of outer bay may have enough grown even the low phosphate and they also have a competitive advantage against other algal species under low nutrient condition. In particular, efficiency of N (+) addition in summer season was higher compared to control and P added experiments. In the bay, silicon was not a major limiting factor for phytoplankton growth, whereas nitrogen (N) was considered as a limiting factor during spring and summer. Therefore, a sufficient silicate supply form water mixing Si recycled from diatom decomposition and river water is favorable form maintaining diatom ecosystems in Gwangyang Bay.

춘계와 하계 광양만에서 식물플랑크톤 군집구조와 그들의 성장에 영향을 미치는 영양염제한 특성을 파악하기 위해서 만내외측의 20개 정점에서 생물학적 요인과 무생물학적 요인을 조사했다. 또한 식물플랑크톤 군집에 대한 영양염 첨가 효과를 알아보기 위해서 실험실에서 현장 20개 정점의 표층수를 이용하여 생물검정실험을 수행하였다. 전체 식물플랑크톤 군집의 90%이상을 규조류가 차지하였다. 이들 규조류중 Eucampia zodiacus와 Skeletonema costatum-like 종이 춘계와 하계에 각각 우점하였다. E. zodiacus와 S. costatum-like 규조류의 개체군 밀도가 춘계와 하계에 높은 밀도를 유지하게 된 이유를 간단히 설명하면, E. zodiacus 의 성장은 춘계 투명도가 높게 나타나 유광층내 광량의 증가가 원인으로 생각된다. 즉 유광층내 광량의 증가는 E. zodiacus의 개체수를 폭발적으로 증가시킬 수 있는 방아쇠 역할을 한 것으로 판단된다. 하계에 S. costatum-like이 전해역에서 우점한 이유는, 섬진강 담수 유입에 의한 낮은 염분과 함께 공급된 다량의 영양염은 그들 생물의 증식에 중요한 bottom-up 효과를 보였다고 판단된다. 실험실의 생물검정실험에서는 비록 내만(정점 8)과 외해(정점 20)에서 식물플랑크톤 군집의 최대 성장율은 유사하였지만, 인산염에 대한 반포화계수($K_s$)는 내만정점보다 약간 낮았다. 상대적으로 낮은 영양염농도에 적응한 세포는 낮은 인산염농도에서 충분히 성장할 수 있고, 다른 미세조류에 비하여 낮은 영양염농도의 조건에서 경쟁의 우위를 차지 할 것이다. 특히, 하계의 N영양염 첨가군의 효율은 대조군과 P영양염 첨가군에 비해서 높았다. 이는 광양만에서 하계에 N영양염의 공급이 섬진강을 통하여 계속적으로 유입되지만, 빠른 식물플랑크톤의 증식으로 인하여 N영양염 제한이 일어날 수 있다는 것을 시사할 수 있다. 반면, 규산염은 식물플랑크톤의 성장에 영향을 미치는 제한인자로 나타나지 않았고, 규조류의 분해로 인하여 Si의 재순환과 담수로부터 공급된 높은 규산염농도는 광양만에서 규조류 생태계를 유지할수 있는 유리한 조건이라 생각된다.

Keywords

References

  1. Baek, S.H., S. Shimode, M.S. Han and T. Kikuchi, 2008. The influence of nutrients concentration and ratio on phytoplankton community structure during late spring and early summer in Sagami Bay, Japan. Algae, 23: 277−288. https://doi.org/10.4490/ALGAE.2008.23.4.277
  2. Baek, S.H. and Y.O. Kim, 2010. The study of summer season in Jinhae Bay-short term changes of community structure and horizontal distribution characteristic of phytoplankton. Korean J. Envir. Bio., 28:115−124.
  3. Baek, S.H., D.S. Kim, B.G. Hyun, H.W. Choi and Y.O. Kim, 2011. Characteristics of horizontal community distribution and nutrient limitation on growth rate of phytoplankton during a winter in Gwangyang Bay, Korea. Ocean and Polar Res., 33: 99−111. https://doi.org/10.4217/OPR.2011.33.2.099
  4. Brand, L.E. 1984. The salinity tolerance of forty-six marine phytoplankton isolates, Estuaries Coastal Shelf Sci., 18: 543−556. https://doi.org/10.1016/0272-7714(84)90089-1
  5. Brzezinski, M.A. 1985. The Si: C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol., 21: 347−357.
  6. Curl, H. and G.C. McLeod, 1961. The physiological ecology of a marine diatom, Skeletonema costatum (Grev.). J. Mar. Res., 19: 70−88.
  7. Davis, A. G., 1970. Iron, chelation and the growth of marine phytoplankton. 1. Growth Kinetics and chlorophyll production in culture of the euryhaline flagellate Dunalliela tertiolecta under ironlimiting conditions. J. Mar. Biol. Assoc. U.K., 50: 65−86. https://doi.org/10.1017/S0025315400000606
  8. ECOHAB, 1995. The Ecology and Oceanography of Harmful Algal Blooms: A national research agenda. Woods Hole Oceanographic Insitute, Woods Hole, 66 pp.
  9. Fisher, T.R., Peele, E.R., J.W. Ammerman and Jr L.W. Harding, 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82: 51−63. https://doi.org/10.3354/meps082051
  10. Fuhs, G. W., 1969. Phosphorus content and rate of growth in the diatom Cyclotella nana and Thalassiosira fluviatilis. J. phycol., 5: 305−321. https://doi.org/10.1111/j.1529-8817.1969.tb02619.x
  11. Fujiki, T., T. Toda, T. Kikuchi, H. Aono and S. Taguchi, 2004. Phosphorus limitation of primary productivity during the spring-summer blooms in Sagami Bay, Japan. Mar. Ecol. Prog. Ser., 283:29−38. https://doi.org/10.3354/meps283029
  12. Goldman, J.C., J.J. McCarthy and D.G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic water. Nature, 297: 210−215.
  13. Goldmen, J. C., and E. J. Carpenter, 1974. A Kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr., 19:756−766. https://doi.org/10.4319/lo.1974.19.5.0756
  14. Han, M.S., Furuya, K. and T. Nemoto, 1992. Species-specific productivity of Skeletonema costatum in the inner part of Tokyo Bay. Mar. Ecol. Prog. Ser., 79: 267−273.
  15. Hecky, R.E., and P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichments. Limnol. Oceanogr., 33:796−822. https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  16. Hitchock, G.L., 1980. Influence of temperature on the growth rate of Skeletonema costatum in response to variations in daily light intensity. Mar. Biol., 57: 261−269. https://doi.org/10.1007/BF00387569
  17. Ito, Y., T. Katano, N. Fujii, M. Koriyama, K. Yoshino and Y. Hayami, 2013. Decreases in turbidity neap tides initiatelate winter blooms of Eucampia zodiacus in a marcrotidal embayment. J. Oceanogr., 69: 467−479. https://doi.org/10.1007/s10872-013-0187-3
  18. Justic, D., N.N. Rabalais, R.E. Turner and Q. Dortch, 1995. Changes in nutrient structure of river-dominated coastal waters: stoichimetric nutrient balance and its consequences. Estuar. Coast. Shelf. Sci., 40: 339−356. https://doi.org/10.1016/S0272-7714(05)80014-9
  19. Kim, B.H., D.H. Won and Y.J. Kim, 2012. Spring bloom of Skeletonema costatum and lake trophic status in the Hwajinpo Lagoon, South Korea. Korean J. Limnol., 45: 329−339.
  20. Kim, D.H., H.S. Cho and Y.S. Lee, 2005. The characteristic of point source loads for nitrogen and phosphorus to Gwangyang Bay, Korea. J. Korean Soc. Mar. Envir. Engineering, 8: 1−8.
  21. Kim, S.Y., C.H. Moon and H.J. Cho, 2003. Relationship between dinoflagellate cyst distribution in surface sediments and phytoplankton assemblages from Gwangyang Bay, a southern coastal area of Korea. J. Korean Soc. Oceanogr., [The Sea] 8: 111−120.
  22. Kwon, K.Y., C.H. Kim, C.G. Kang, C.H. Moon, M.O. Park and S.R. Yang, 2002. Limiting nutrients for phytoplankton growth in the Seomjin River estuary as determined by algal bioassay experiment. J. Korean Fish. Soc. 35: 455−462. https://doi.org/10.5657/kfas.2002.35.5.455
  23. Kwon, K.Y., C.H. Moon and H.S. Yang, 2001. Behavior of nutrients along the salinity gradients in the Seomjin River estuary. J. Korean Fish. Soc. 34: 199−206.
  24. Lee, Y.S., J.S. Lee, R.H. Jung, S.S. Kim, W.J. Go, K.Y. Kim and J.S. Park, 2001. Limiting nutrient on phytoplankton growth in Gwangyang Bay. J. Korean Soc. Oceanogr., [The Sea] 6: 201−210.
  25. Lee, Y.S., C.K. Kang, Y.K. Choi and S.Y. Lee, 2007. Origin and spatial distribution of organic matter at Gwangyang Bay in the fall. J. Korean Soc. Oceanogr., [The Sea] 12: 1−8.
  26. Lee, B.K., S.Y. Kim and H.M. Cho, 2010. Distrubution and behaviors of in-situ suspended particulate matters of Gwangyang Bay. J. Korean Soc. Ocean Engineers, 24: 99−105.
  27. Martin, J.L., C.D. Hastey, M.M. LeGresley and F.H. Page, 2007. Temporal and spatial characteristics of the diatom Eucampia zodiacus in the Western Isles of the Bay of Fundy. Can Tech Rep Fish Aquat Sci., 2705: 1-22.
  28. Matsubara, T., 2012. Current status and issues of the Ariake Bay, a potentially highly productive coastal sea. In: Oshima Y (ed). Kouseisha-souseikaku. pp. 9−24.
  29. Nishikawa, T., Y. Hori, S. Nagai, K. Miyahara, Y. Nakamura, K. Harada, K. Tada and I. Imai, 2011. Long time-series observations in population dynamics of the harmful diatom Eucampia zodiacus and environmental factor in Harima-Nada, eastern Seto Inland Sea, Japan during 1974-2008. Plankton Benthos Res., 6: 26−34. https://doi.org/10.3800/pbr.6.26
  30. Nishikawa, T., Y. Hori, K. Tanida and I. Imai, 2007. Population dynamics of the hamful diatom Eucampia zodiacus Ehrenberg causing bleachings of porphyra thailli in aquaculture in Harima-Nada, the Seto Inland Sea, Japan. Harmful Algae, 6: 763−773. https://doi.org/10.1016/j.hal.2007.04.005
  31. Nishikawa, T., 2002 Effect of temperature, salinity and irradiance on the growth of the diatom Eucampia zodiacus caused bleaching seaweed porphyra isolated from Harima-Nada, the Seto Inland Sea, Japan. Nippon Suisan Gakkagi, 68: 356−361. https://doi.org/10.2331/suisan.68.356
  32. Oh, S.J., I.S. Kang, Y.H. Yoon and H.S. Yang, 2008. Optical characteristic on the growth of centric diatom, Skeletonema costatum (Grev.) Cleve isolated from Jinhae Bay in Korea. Korean J. Environ. Biol., 26: 57−65.
  33. Oh, S.J., J.S. Park, Y.H. Yoon and H.S. Yang, 2009. Variation analysis of phytoplankton communities in northern Gamak Bay, Korea. J. Korean Soc. Mar. Envir. Safety, 15: 329−338.
  34. Raven, J.A., 1998. The twelfth tansley lecture. Small is beautiful: the picophytoplankton. Functional Ecology. 503−513 pp.
  35. Redfield, A.C., B.H. Ketchum and F.A. Rechards, 1963. The influence of organisms on the composition of seawater: In: Hill, M.N (Ed.). The Sea. John Wiley, New York, pp. 26-77.
  36. Rhee, G.Y., 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol., 9:495−506.
  37. Rijstenbil, J.W., 1989. Competitive intraction between Ditylum brightwelli and Skeletonema costatum by toxic metabolites. Neth. J. Sea Res., 2: 23−37.
  38. Ryther, J.H. and W.M. Dunstan, 1971. Nitrogen, Phosphorus and eutrophication in the coastal marine environment. Science, 171: 1008−1013. https://doi.org/10.1126/science.171.3975.1008
  39. Sommer, U. 1989. The role of competition for resource in phytoplankton succession, In: plankton communities, Springer-Verlag, Paris, pp. 57−106.
  40. Taylor, D., Nixon, S., Granger, S. and B. Buckley, 1995. Nutrient limitation and the eutrophication of coastal lagoons. Mar. Ecol. Prog. Ser., 127: 235−244. https://doi.org/10.3354/meps127235
  41. Turner, R.E., N. Qureschi, N.N. Rabalais, Q. Dortch, D. Justic, R.F. Shaw and J. Cope, 1998. Fluctucating silicate: nitrate ratios and coastal food webs. Proceeding National Academy Sci., 95:13048−13051
  42. Yi, S.H., Y.S. Sin, S.R. Yang and C. Park, 2005. Seasonal characteristics of phytoplankton distribution in Asan Bay. Ocean Polar Res., 27: 149−159. https://doi.org/10.4217/OPR.2005.27.2.149
  43. Yih, W.H., G.M. Myung, Y.D. Yoo, Y.G. Kim and H.J. Jeong, 2005. Semiweekly variation of spring phytoplankton community in relation to the freshwater discharges from Keum River estuarine Weir, Korea. J. Korean Soc. Oceanogr., [The Sea] 10: 154−163.
  44. Yoon, Y.H., 1999. The characteristics on the spatio-temporal distributions of phytoplankton communities in Deukryang Bay, Southwestern Korea. Korean J. Environ. Biol., 17: 481−492.
  45. Yoshida, K., S, Chiba and T. Ishimaru, 2011. Long-term variation in the wintertime diatom community structure in Tokyo Bay, Japan. Plankton Benthos Res., 6: 195−205. https://doi.org/10.3800/pbr.6.195

Cited by

  1. Growth characteristics and distribution pattern of a brackish water clam, Corbicula japonica along an estuarine salinity gradient in Seomjin River vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.6852
  2. Tidal Influences on Biotic and Abiotic Factors in the Seomjin River Estuary and Gwangyang Bay, Korea vol.41, pp.7, 2018, https://doi.org/10.1007/s12237-018-0404-9