J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2014.21.1.23 Volume 21, Number 1 (February 2014), Pages 23–38

TRIPLED FIXED POINT THEOREM FOR HYBRID PAIR OF MAPPINGS UNDER GENERALIZED NONLINEAR CONTRACTION

BHAVANA DESHPANDE^{a,*}, SUSHIL SHARMA^b AND AMRISH HANDA^c

ABSTRACT. In this paper, we introduce the concept of w-compatibility and weakly commutativity for hybrid pair of mappings $F: X \times X \times X \to 2^X$ and $g: X \to X$ and establish a common tripled fixed point theorem under generalized nonlinear contraction. An example is also given to validate our result. We improve, extend and generalize various known results.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed bounded subsets of X. Let D(x, A) denote the distance from x to $A \subset X$ and H denote the Hausdorff metric induced by d, that is,

$$D(x, A) = \inf_{a \in A} d(x, a)$$

and $H(A, B) = \max\{\sup_{a \in A} D(a, B), \sup_{b \in B} D(b, A)\}, \text{ for all } A, B \in CB(X).$

Markin [23] initiated the study of fixed points for multivalued contractions and non-expansive maps using the Hausdorff metric. Fixed points existence for various multivalued contractive mappings has been studied by several authors under different conditions. For details, we refer the reader to [1, 2, 12, 13, 14, 15, 16, 18, 19, 20, 21, 25, 26, 27] and the reference therein. Multivalued maps theory has application in control theory, convex optimization, differential equations and economics.

Bhaskar and Lakshmikantham [10], established some coupled fixed point theorems and apply these to study the existence and uniqueness of solution for periodic

 $\bigodot 2014$ Korean Soc. Math. Educ.

Received by the editors August 2, 2013. Accepted November 25, 2013.

²⁰¹⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. tripled fixed point, tripled coincidence point, generalized nonlinear contraction.

^{*}Corresponding author.

boundary value problems. Lakshmikantham and Ciric [22] proved coupled coincidence and common coupled fixed point theorems for nonlinear contractive mappings in partially ordered complete metric spaces and extended the results of Bhaskar and Lakshmikantham [10].

Berinde and Borcut [8] introduced the concept of tripled fixed point for single valued mappings in partially ordered metric spaces. In [8], Berinde and Borcut established the existence of tripled fixed point of single-valued mappings in partially ordered metric spaces. For more details on tripled fixed point theory, we also refer the reader to [3, 4, 5, 6, 7, 9, 11]. Samet and Vetro [24] introduced the notion of fixed point of N order in case of single-valued mappings. In particular for N=3 (tripled case), we have the following definition:

Definition 1.1 ([24]). Let X be a non-empty set and $F : X \times X \times X \to X$ be a given mapping. An element $(x, y, z) \in X \times X \times X$ is called a *tripled fixed point* of the mapping F if

$$F(x, y, z) = x, F(y, z, x) = y$$
 and $F(z, x, y) = z$.

In this paper, we prove a common tripled fixed point for hybrid pair of mappings under generalized nonlinear contraction. We improve, extend and generalize the results of Ding, Li and Radenovic [17] and Abbas, Ciric, Damjanovic and Khan [2]. The effectiveness of the present work is validated with the help of suitable example.

2. Main Results

First we introduce the following:

Definition 2.1. Let X be a nonempty set, $F : X \times X \times X \to 2^X$ (a collection of all nonempty subsets of X) and g be a self-map on X. An element $(x, y, z) \in X \times X \times X$ is called

- (1) a tripled fixed point of F if $x \in F(x, y, z)$, $y \in F(y, z, x)$ and $z \in F(z, x, y)$.
- (2) a tripled coincidence point of hybrid pair $\{F, g\}$ if $g(x) \in F(x, y, z), g(y) \in F(y, z, x)$ and $g(z) \in F(z, x, y)$.
- (3) a common tripled fixed point of hybrid pair $\{F, g\}$ if $x = g(x) \in F(x, y, z)$, $y = g(y) \in F(y, z, x)$ and $z = g(z) \in F(z, x, y)$.

We denote the set of tripled coincidence points of mappings F and g by C(F, g). Note that if $(x, y, z) \in C(F, g)$, then (y, z, x) and (z, x, y) are also in C(F, g). **Definition 2.2.** Let $F: X \times X \times X \to 2^X$ be a multivalued mapping and g be a self-map on X. The hybrid pair $\{F, g\}$ is called *w*-compatible if $g(F(x, y, z)) \subseteq F(gx, gy, gz)$ whenever $(x, y, z) \in C(F, g)$.

Definition 2.3. Let $F: X \times X \times X \to 2^X$ be a multivalued mapping and g be a self-map on X. The mapping g is called F-weakly commuting at some point $(x, y, z) \in X^3$ if $g^2x \in F(gx, gy, gz), g^2y \in F(gy, gz, gx)$ and $g^2z \in F(gz, gx, gy)$.

Lemma 2.1. Let (X, d) be a metric space. Then, for each $a \in X$ and $B \in CB(X)$, there is $b_0 \in B$ such that $D(a, B) = d(a, b_0)$, where $D(a, B) = \inf_{b \in B} d(a, b)$.

Proof. Let $a \in X$ and $B \in CB(X)$. Since the function d is continuous. Thus, by the closedness of B, there exists $b_0 \in B$ such that $\inf_{b \in B} d(a, b) = d(a, b_0)$, that is, $D(a, B) = d(a, b_0)$.

Let Φ denote the set of all functions $\varphi: [0, \infty) \to [0, \infty)$ satisfying

 $(i_{\varphi}) \varphi$ is non-decreasing,

 $(ii_{\varphi}) \lim_{n \to \infty} \varphi^n(t) = 0 \text{ for all } t > 0.$

It is clear that $\varphi(t) < t$ for each t > 0. In fact, if $\varphi(t_0) \ge t_0$ for some $t_0 > 0$, then, since φ is non-decreasing, $\varphi^n(t_0) \ge t_0$ for all $n \in \mathbb{N}$, which contradicts with $\lim_{n\to\infty} \varphi^n(t_0) = 0$. In addition, it is easy to see that $\varphi(0) = 0$.

Theorem 2.1. Let (X, d) be a metric space. Assume $F : X \times X \times X \to CB(X)$ and $g : X \to X$ be two mappings satisfying

$$(2.1) \qquad \leq \varphi \left[\max \left\{ \begin{array}{l} H(F(x, y, z), F(u, v, w)) \\ d(gx, gu), D(gx, F(x, y, z)), D(gu, F(u, v, w)), \\ d(gy, gv), D(gy, F(y, z, x)), D(gv, F(v, w, u)), \\ d(gz, gw), D(gz, F(z, x, y)), D(gw, F(w, u, v)), \\ \frac{1}{2} [D(gx, F(u, v, w)) + D(gu, F(x, y, z))], \\ \frac{1}{2} [D(gy, F(v, w, u)) + D(gv, F(y, z, x))], \\ \frac{1}{2} [D(gz, F(w, u, v)) + D(gw, F(z, x, y))] \end{array} \right\} \right],$$

for all $x, y, z, u, v, w \in X$, where $\varphi \in \Phi$. Furthermore assume that $F(X \times X \times X) \subseteq g(X)$ and g(X) is a complete subset of X. Then F and g have a tripled coincidence point. Moreover, F and g have a common tripled fixed point, if one of the following conditions holds:

(a) F and g are w-compatible. lim_{n→∞} gⁿx = u, lim_{n→∞} gⁿy = v and lim_{n→∞} gⁿz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g is continuous at u, v and w.

- (b) g is F-weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and gz are fixed points of g, that is, g²x = gx, g²y = gy and g²z = gz.
- (c) g is continuous at x, y and z. $\lim_{n\to\infty} g^n u = x$, $\lim_{n\to\infty} g^n v = y$ and $\lim_{n\to\infty} g^n w = z$ for some $(x, y, z) \in C(F, g)$ and for some $u, v, w \in X$.
- (d) g(C(g, F)) is singleton subset of C(g, F).

Proof. Let $x_0, y_0, z_0 \in X$ be arbitrary. Then $F(x_0, y_0, z_0)$, $F(y_0, z_0, x_0)$ and $F(z_0, x_0, y_0)$ are well defined. Choose $gx_1 \in F(x_0, y_0, z_0)$, $gy_1 \in F(y_0, z_0, x_0)$ and $gz_1 \in F(z_0, x_0, y_0)$, because $F(X \times X \times X) \subseteq g(X)$. Since $F: X \times X \times X \to CB(X)$, therefore by Lemma 2.1, there exist $u_1 \in F(x_1, y_1, z_1)$, $u_2 \in F(y_1, z_1, x_1)$ and $u_3 \in F(z_1, x_1, y_1)$ such that

$$\begin{aligned} &d(gx_1, u_1) &\leq & H(F(x_0, y_0, z_0), F(x_1, y_1, z_1)), \\ &d(gy_1, u_2) &\leq & H(F(y_0, z_0, x_0), F(y_1, z_1, x_1)), \\ &d(gz_1, u_3) &\leq & H(F(z_0, x_0, y_0), F(z_1, x_1, y_1)). \end{aligned}$$

Since $F(X \times X \times X) \subseteq g(X)$, there exist $x_2, y_2, z_2 \in X$ such that $u_1 = gx_2, u_2 = gy_2$ and $u_3 = gz_2$. Thus

$$\begin{array}{rcl} d(gx_1,gx_2) &\leq & H(F(x_0,y_0,z_0),F(x_1,y_1,z_1)), \\ d(gy_1,gy_2) &\leq & H(F(y_0,z_0,x_0),F(y_1,z_1,x_1)), \\ d(gz_1,gz_2) &\leq & H(F(z_0,x_0,y_0),F(z_1,x_1,y_1)). \end{array}$$

Continuing this process, we obtain sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ in X such that for all $n \in \mathbb{N}$, we have $gx_{n+1} \in F(x_n, y_n, z_n)$, $gy_{n+1} \in F(y_n, z_n, x_n)$ and $gz_{n+1} \in F(z_n, x_n, y_n)$ such that

$$d(gx_n, gx_{n+1}) \leq H(F(x_{n-1}, y_{n-1}, z_{n-1}), F(x_n, y_n, z_n)) \\ \leq H(F(x_{n-1}, gx_n), D(gx_{n-1}, F(x_{n-1}, y_{n-1}, z_{n-1})), D(gx_n, F(x_n, y_n, z_n)), d(gy_{n-1}, gy_n), D(gy_{n-1}, F(y_{n-1}, z_{n-1}, x_{n-1})), D(gy_n, F(y_n, z_n, x_n)), d(gz_{n-1}, gz_n), D(gz_{n-1}, F(z_{n-1}, x_{n-1}, y_{n-1})), D(gy_n, F(y_n, z_n, x_n)), \frac{D(gx_{n-1}, F(x_n, y_n, z_n)) + D(gx_n, F(x_{n-1}, y_{n-1}, z_{n-1}))}{2}, \frac{D(gy_{n-1}, F(y_n, z_n, x_n)) + D(gy_n, F(y_{n-1}, z_{n-1}, x_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gy_n, F(y_{n-1}, z_{n-1}, x_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gy_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}}, \frac{D(gz_{n-1}, F(z_n, x_n, y_n)) + D(gz_n, F(z_{n-1}, x_{n-1}, y_{n-1}))}{2}}$$

26

$$\leq \varphi \left[\max \left\{ \begin{array}{l} d(gx_{n-1}, gx_n), d(gx_{n-1}, gx_n), d(gx_n, gx_{n+1}), \\ d(gy_{n-1}, gy_n), d(gy_{n-1}, gy_n), d(gy_n, gy_{n+1}), \\ d(gz_{n-1}, gz_n), d(gz_{n-1}, gz_n), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}) + d(gx_n, gx_n)}{2}, \frac{d(gy_{n-1}, gy_{n+1}) + d(gy_n, gy_n)}{2}, \\ \frac{d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n), \\ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}), d(gy_{n-1}, gy_{n+1}), d(gz_{n-1}, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}), d(gy_{n-1}, gy_{n+1}), d(gy_{n-1}, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}), d(gy_{n-1}, gy_{n+1}), d(gy_{n-1}, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}), d(gy_{n-1}, gy_{n+1}), d(gy_{n-1}, gy_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1}), d(gy_{n-1}, gy_{n+1}), d(gy_{n-1}, gy_{n+1}), \\ \frac{d(gx_{n-1}, gy_{n-1}), d(gy_{n-1}, gy_{n-1}), d(gy_{n-1}, gy_{n-1}), \\ \frac{d(gx_{n-1}, gy_{n-1}), d(gy_{n-1}, gy_{n-1}), d(gy_{n-1}, gy_{n-1}), d(gy_{n-1}, gy_{n-1}), d(gy_{n-1}, gy_{n-1}), d(g$$

Thus

$$(2.2) \quad d(gx_n, gx_{n+1}) \le \varphi \left[\max \left\{ \begin{array}{c} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), \\ d(gz_{n-1}, gz_n), d(gx_n, gx_{n+1}), \\ d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1})}{2}, \frac{d(gy_{n-1}, gy_{n+1})}{2}, \frac{d(gz_{n-1}, gz_{n+1})}{2} \end{array} \right\} \right]$$

Similarly

$$(2.3) \quad d(gy_n, gy_{n+1}) \leq \varphi \left[\max \left\{ \begin{array}{c} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), \\ d(gz_{n-1}, gz_n), d(gx_n, gx_{n+1}), \\ d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1})}{2}, \frac{d(gy_{n-1}, gy_{n+1})}{2}, \frac{d(gz_{n-1}, gz_{n+1})}{2} \end{array} \right\} \right],$$

$$(2.4) \quad d(gz_n, gz_{n+1}) \leq \varphi \left[\max \left\{ \begin{array}{c} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), \\ d(gz_{n-1}, gz_n), d(gx_n, gx_{n+1}), \\ d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1})}{2}, \frac{d(gy_{n-1}, gy_{n+1})}{2}, \frac{d(gz_{n-1}, gz_{n+1})}{2} \end{array} \right\} \right].$$

Combining (2.2), (2.3) and (2.4), we get

$$\max \left\{ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \right\} \\ \leq \varphi \left[\max \left\{ \begin{array}{l} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n), \\ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_{n+1})}{2}, \frac{d(gy_{n-1}, gy_{n+1})}{2}, \frac{d(gz_{n-1}, gz_{n+1})}{2} \end{array} \right\} \right] \\ \leq \varphi \left[\max \left\{ \begin{array}{l} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n), \\ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \frac{d(gx_{n-1}, gx_n) + d(gx_n, gx_{n+1})}{2}, \\ \frac{d(gy_{n-1}, gy_n) + d(gy_n, gy_{n+1})}{2}, \\ \frac{d(gy_{n-1}, gy_n) + d(gy_n, gy_{n+1})}{2}, \\ \frac{d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n), \\ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}), \\ \end{array} \right\} \right] .$$

•

Thus

(2.5)
$$\max \left\{ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \right\} \\ \leq \varphi \left[\max \left\{ \begin{array}{c} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n), \\ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \end{array} \right\} \right].$$

If we suppose that

$$\max \left\{ \begin{array}{l} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n), \\ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \end{array} \right\}$$

=
$$\max \left\{ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \right\},$$

then by (2.5), (i_{φ}) and (ii_{φ}) , we have

$$\max \{ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \}$$

$$\leq \varphi \left[\max \{ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \} \right]$$

$$< \max \{ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \} ,$$

which is a contradiction. Thus, we must have

$$\max \left\{ \begin{array}{l} d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n), \\ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \end{array} \right\}$$

=
$$\max \left\{ d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n) \right\}.$$

Hence by (2.5), we have for all $n \in \mathbb{N}$,

$$\max \{ d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1}) \}$$

$$\leq \varphi \left[\max \{ d(gx_{n-1}, gx_n), d(gy_{n-1}, gy_n), d(gz_{n-1}, gz_n) \} \right]$$

$$\leq \varphi^n \left[\max \{ d(gx_0, gx_1), d(gy_0, gy_1), d(gz_0, gz_1) \} \right].$$

Thus

(2.6)
$$\max\left\{d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1})\right\} \le \varphi^n(\delta),$$

where

$$\delta = \max \left\{ d(gx_0, gx_1), d(gy_0, gy_1), d(gz_0, gz_1) \right\}.$$

Without loss of generality, one can assume that $\max\{d(gx_0, gx_1), d(gy_0, gy_1), d(gz_0, gz_1)\} \neq 0$. In fact, if this is not true, then $gx_0 = gx_1 \in F(x_0, y_0, z_0), gy_0 = gy_1 \in F(y_0, z_0, x_0)$ and $gz_0 = gz_1 \in F(z_0, x_0, y_0)$, that is, (x_0, y_0, z_0) is a tripled coincidence point of F and g.

Thus, for $m, n \in \mathbb{N}$ with m > n, by triangle inequality and (2.6), we get

$$\begin{aligned} &d(gx_n, gx_{m+n}) \\ &\leq \quad d(gx_n, gx_{n+1}) + d(gx_{n+1}, gx_{n+2}) + \ldots + d(gx_{n+m-1}, gx_{m+n}) \\ &\leq \quad \max\left\{d(gx_n, gx_{n+1}), d(gy_n, gy_{n+1}), d(gz_n, gz_{n+1})\right\} \\ &+ \max\left\{d(gx_{n+1}, gx_{n+2}), d(gy_{n+1}, gy_{n+2}), d(gz_{n+1}, gz_{n+2})\right\} \\ &+ \ldots + \max\left\{d(gx_{n+m-1}, gx_{n+m+1}), d(gy_{n+m-1}, gy_{n+m}), d(gz_{n+m-1}, gz_{n+m})\right\} \\ &\leq \quad \varphi^n(\delta) + \varphi^{n+1}(\delta) + \ldots + \varphi^{n+m-1}(\delta) \\ &\leq \quad \sum_{i=n}^{n+m-1} \varphi^i(\delta), \end{aligned}$$

which implies, by (ii_{φ}) , that $\{gx_n\}$ is a Cauchy sequence in g(X). Similarly we obtain that $\{gy_n\}$ and $\{gz_n\}$ are Cauchy sequences in g(X). Since g(X) is complete, there exist $x, y, z \in X$ such that

(2.7)
$$\lim_{n \to \infty} gx_n = gx, \lim_{n \to \infty} gy_n = gy \text{ and } \lim_{n \to \infty} gz_n = gz.$$

Now, since $gx_{n+1} \in F(x_n, y_n, z_n)$, $gy_{n+1} \in F(y_n, z_n, x_n)$ and $gz_{n+1} \in F(z_n, x_n, y_n)$, therefore by using condition (2.1), we get

(2.8)
$$D(gx_{n+1}, F(x, y, z)) \le H(F(x_n, y_n, z_n), F(x, y, z)) \le \varphi[\Delta_n],$$

(2.9)
$$D(gy_{n+1}, F(y, z, x)) \leq H(F(y_n, z_n, x_n), F(y, z, x)) \leq \varphi[\Delta_n],$$

(2.10)
$$D(gz_{n+1}, F(z, x, y)) \leq H(F(z_n, x_n, y_n), F(z, x, y)) \leq \varphi[\Delta_n],$$

where

$$\Delta_{n} = \max \left\{ \begin{array}{l} d(gx_{n}, gx), d(gx_{n}, gx_{n+1}), D(gx, F(x, y, z)), \\ d(gy_{n}, gy), d(gy_{n}, gy_{n+1}), D(gy, F(y, z, x)), \\ d(gz_{n}, gz), d(gz_{n}, gz_{n+1}), D(gz, F(z, x, y)), \\ \frac{1}{2} [D(gx_{n}, F(x, y, z)) + d(gx, gx_{n+1})], \\ \frac{1}{2} [D(gy_{n}, F(y, z, x)) + d(gy, gy_{n+1})], \\ \frac{1}{2} [D(gz_{n}, F(z, x, y)) + d(gz, gz_{n+1})] \end{array} \right\}.$$

Since $\lim_{n\to\infty} gx_n = gx$, $\lim_{n\to\infty} gy_n = gy$ and $\lim_{n\to\infty} gz_n = gz$, there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$,

$$\Delta_n = \max\left\{D(gx, F(x, y, z)), D(gy, F(y, z, x)), D(gz, F(z, x, y))\right\}.$$

Combining this with (2.8), (2.9) and (2.10), we get for all $n > n_0$,

(2.11)
$$\max \left\{ \begin{array}{c} D(gx_{n+1}, F(x, y, z)), D(gy_{n+1}, F(y, z, x)), \\ D(gz_{n+1}, F(z, x, y)) \\ \leq \varphi \left[\max \left\{ \begin{array}{c} D(gx, F(x, y, z)), D(gy, F(y, z, x)), \\ D(gz, F(z, x, y)) \end{array} \right\} \right]. \end{array} \right.$$

Now, we claim that

(2.12)
$$\max \{ D(gx, F(x, y, z)), D(gy, F(y, z, x)), D(gz, F(z, x, y)) \} = 0.$$

If this is not true, then

$$\max \left\{ D(gx,F(x,y,z)), D(gy,F(y,z,x)), D(gz,F(z,x,y)) \right\} > 0.$$

Thus, by (2.11), (i_{φ}) and (ii_{φ}) , we get for all $n > n_0$,

$$\max \left\{ \begin{array}{c} D(gx_{n+1}, F(x, y, z)), D(gy_{n+1}, F(y, z, x)), \\ D(gz_{n+1}, F(z, x, y)) \end{array} \right\} \\ \leq \varphi \left[\max \left\{ \begin{array}{c} D(gx, F(x, y, z)), D(gy, F(y, z, x)), \\ D(gz, F(z, x, y)) \end{array} \right\} \right] \\ < \max \left\{ \begin{array}{c} D(gx, F(x, y, z)), D(gy, F(y, z, x)), \\ D(gz, F(z, x, y)) \end{array} \right\}.$$

Thus

(2.13)
$$\max \left\{ \begin{array}{c} D(gx_{n+1}, F(x, y, z)), D(gy_{n+1}, F(y, z, x)), \\ D(gz_{n+1}, F(z, x, y)) \\ < \max \left\{ \begin{array}{c} D(gx, F(x, y, z)), D(gy, F(y, z, x)), \\ D(gz, F(z, x, y)) \end{array} \right\} \right.$$

Letting $n \to \infty$ in (2.13), by using (2.7), we obtain

$$\max \{ D(gx, F(x, y, z)), D(gy, F(y, z, x)), D(gz, F(z, x, y)) \}$$

<
$$\max \{ D(gx, F(x, y, z)), D(gy, F(y, z, x)), D(gz, F(z, x, y)) \},$$

which is a contradiction. So (2.12) holds. Thus, it follows that

$$gx \in F(x, y, z), gy \in F(y, z, x) \text{ and } gz \in F(z, x, y),$$

that is, (x, y, z) is a tripled coincidence point of F and g. Hence C(F, g) is nonempty. Suppose now that (a) holds. Assume that for some $(x, y, z) \in C(F, g)$,

(2.14)
$$\lim_{n \to \infty} g^n x = u, \lim_{n \to \infty} g^n y = v \text{ and } \lim_{n \to \infty} g^n z = w,$$

where $u, v, w \in X$. Since g is continuous at u, v and w. We have, by (2.14), that u, v and w are fixed points of g, that is,

$$(2.15) gu = u, gv = v \text{ and } gw = w.$$

As F and g are w-compatible, so for all $n \ge 1$,

(2.16)
$$g^{n}x \in F(g^{n-1}x, g^{n-1}y, g^{n-1}z), \\ g^{n}y \in F(g^{n-1}y, g^{n-1}z, g^{n-1}x), \\ g^{n}x \in F(g^{n-1}z, g^{n-1}x, g^{n-1}y).$$

Now, by using (2.1) and (2.16), we obtain

$$\begin{array}{ll} (2.17) & D(g^n x, F(u, v, w)) &\leq H(F(g^{n-1}x, g^{n-1}y, g^{n-1}z), F(u, v, w)) \leq \varphi[\nabla_n], \\ (2.17) & D(g^n y, F(v, w, u)) &\leq H(F(g^{n-1}y, g^{n-1}z, g^{n-1}x), F(v, w, u)) \leq \varphi[\nabla_n], \\ & D(g^n z, F(w, u, v)) &\leq H(F(g^{n-1}z, g^{n-1}x, g^{n-1}y), F(w, u, v)) \leq \varphi[\nabla_n], \end{array}$$

where

$$\nabla_n = \max \left\{ \begin{array}{l} d(g^n x, gu), D(gu, F(u, v, w)), \frac{D(g^n x, F(u, v, w)) + d(gu, g^n x)}{2}, \\ d(g^n y, gv), D(gv, F(v, w, u)), \frac{D(g^n y, F(v, w, u)) + d(gv, g^n y)}{2}, \\ d(g^n z, gw), D(gw, F(w, u, v)), \frac{D(g^n z, F(w, u, v)) + d(gw, g^n z)}{2} \end{array} \right\}.$$

By (2.14) and (2.15), there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$,

$$\nabla_n = \max \left\{ D(gu, F(u, v, w)), D(gv, F(v, w, u)), D(gw, F(w, u, v)) \right\}.$$

Combining this with (2.17), we get for all $n > n_0$,

(2.18)
$$\max\left\{\begin{array}{l} D(g^n x, F(u, v, w)),\\ D(g^n y, F(v, w, u)),\\ D(g^n z, F(w, u, v))\end{array}\right\} \le \varphi\left[\max\left\{\begin{array}{l} D(gu, F(u, v, w)),\\ D(gv, F(v, w, u)),\\ D(gw, F(w, u, v))\end{array}\right\}\right]$$

Now, we claim that

(2.19)
$$\max \{ D(gu, F(u, v, w)), D(gv, F(v, w, u)), D(gw, F(w, u, v)) \} = 0.$$

If this is not true, then

$$\max \{ D(gu, F(u, v, w)), D(gv, F(v, w, u)), D(gw, F(w, u, v)) \} > 0.$$

Thus, by (2.18), (i_{φ}) and (ii_{φ}) , we get for all $n > n_0$,

(2.20)
$$\max \left\{ \begin{array}{l} D(g^{n}x, F(u, v, w)), \\ D(g^{n}y, F(v, w, u)), \\ D(g^{n}z, F(w, u, v)) \end{array} \right\} < \max \left\{ \begin{array}{l} D(gu, F(u, v, w)), \\ D(gv, F(v, w, u)), \\ D(gw, F(w, u, v)) \end{array} \right\}.$$

On taking limit as $n \to \infty$ in (2.20), by using (2.14) and (2.15), we get

$$\max \left\{ D(gu, F(u, v, w)), D(gv, F(v, w, u)), D(gw, F(w, u, v)) \right\}$$

$$< \max \{ D(gu, F(u, v, w)), D(gv, F(v, w, u)), D(gw, F(w, u, v)) \} ,$$

which is a contradiction. So (2.19) holds. Thus, it follows that

(2.21)
$$gu \in F(u, v, w), gv \in F(v, w, u) \text{ and } gw \in F(w, u, v).$$

Now, from (2.15) and (2.21), we have

 $u = gu \in F(u, v, w), v = gv \in F(v, w, u)$ and $w = gw \in F(w, u, v),$

that is, (u, v, w) is a common tripled fixed point of F and g.

Suppose now that (b) holds. Assume that for some $(x, y, z) \in C(F, g)$, g is F-weakly commuting, that is, $g^2x \in F(gx, gy, gz)$, $g^2y \in F(gy, gz, gx)$, $g^2z \in F(gz, gx, gy)$ and $g^2x = gx$, $g^2y = gy$, $g^2z = gz$. Thus $gx = g^2x \in F(gx, gy, gz)$, $gy = g^2y \in F(gy, gz, gx)$ and $gz = g^2z \in F(gz, gx, gy)$, that is, (gx, gy, gz) is a common tripled fixed point of F and g.

Suppose now that (c) holds. Assume that for some $(x, y, z) \in C(F, g)$ and for some $u, v, w \in X$, $\lim_{n\to\infty} g^n u = x$, $\lim_{n\to\infty} g^n v = y$ and $\lim_{n\to\infty} g^n w = z$. Since g is continuous at x, y and z. We have that x, y and z are fixed point of g, that is, gx = x, gy = y and gz = z. Since $(x, y, z) \in C(F, g)$, therefore, we obtain

$$x = gx \in F(x, y, z), \ y = gy \in F(y, z, x)$$

and

$$z = gz \in F(z, x, y),$$

that is, (x, y, z) is a common tripled fixed point of F and g.

Finally, suppose that (d) holds. Let $g(C(F, g)) = \{(x, x, x)\}$. Then $\{x\} = \{gx\} = F(x, x, x)$. Hence (x, x, x) is tripled fixed point of F and g.

Example 2.1. Suppose that X = [0, 1], equipped with the metric $d : X \times X \to [0, +\infty)$ defined by $d(x, y) = \max\{x, y\}$ and d(x, x) = 0 for all $x, y \in X$. Let $F : X \times X \times X \to CB(X)$ be defined as

$$F(x, y, z) = \begin{cases} \{0\}, & \text{for } x, y, z = 1\\ \left[0, \frac{x^2 + y^2 + z^2}{6}\right], & \text{for } x, y, z \in [0, 1) \end{cases}$$

and $g: X \to X$ be defined as

$$g(x) = x^2$$
, for all $x \in X$.

Define $\varphi : [0, \infty) \to [0, \infty)$ by

$$\varphi(t) = \begin{cases} \frac{t}{2}, & \text{for } t \neq 1 \\ \frac{3}{4}, & \text{for } t = 1. \end{cases}$$

Now, for all $x, y, z, u, v, w \in X$ with $x, y, z, u, v, w \in [0, 1)$, we have

Case (a) If $x^2 + y^2 + z^2 = u^2 + v^2 + w^2$, then

$$\begin{split} &H(F(x,y,z),F(u,v,w)) \\ &= \frac{u^2 + v^2 + w^2}{6} \\ &\leq \frac{1}{6} \max\left\{x^2, u^2\right\} + \frac{1}{6} \max\left\{y^2, v^2\right\} + \frac{1}{6} \max\left\{z^2, w^2\right\} \\ &\leq \frac{1}{6} d(gx,gu) + \frac{1}{6} d(gy,gv) + \frac{1}{6} d(gz,gw) \\ &\leq \frac{1}{2} \left[\max\left\{ \begin{array}{c} d(gx,gu), D(gx,F(x,y,z)), D(gu,F(u,v,w)), \\ d(gy,gv), D(gy,F(y,z,x)), D(gv,F(v,w,u)), \\ d(gz,gw), D(gz,F(z,x,y)), D(gw,F(w,u,v)), \\ \frac{1}{2} [D(gx,F(u,v,w)) + D(gu,F(x,y,z))], \\ \frac{1}{2} [D(gz,F(w,u,v)) + D(gv,F(y,z,x))], \\ \frac{1}{2} [D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ &\leq \varphi \left[\max\left\{ \begin{array}{c} d(gx,gu), D(gx,F(x,y,z)), D(gv,F(w,u,w)), \\ d(gy,gv), D(gy,F(y,z,x)), D(gv,F(v,w,u)), \\ d(gy,gv), D(gz,F(z,x,y)), D(gv,F(v,w,u)), \\ d(gz,gw), D(gz,F(z,x,y)), D(gw,F(w,u,v)), \\ \frac{1}{2} [D(gx,F(w,v,w)) + D(gw,F(x,y,z))], \\ \frac{1}{2} [D(gy,F(v,w,u)) + D(gv,F(y,z,x))], \\ \frac{1}{2} [D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ &\leq D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ \end{array} \right\} \right]. \end{split}$$

Case (b) If $x^2 + y^2 + z^2 \neq u^2 + v^2 + w^2$ with $x^2 + y^2 + z^2 < u^2 + v^2 + w^2$, then

$$\begin{array}{l} H(F(x,y,z),F(u,v,w)) \\ = & \frac{u^2+v^2+w^2}{6} \\ \leq & \frac{1}{6}\max\left\{x^2,u^2\right\} + \frac{1}{6}\max\left\{y^2,v^2\right\} + \frac{1}{6}\max\left\{z^2,w^2\right\} \\ \leq & \frac{1}{6}d(gx,gu) + \frac{1}{6}d(gy,gv) + \frac{1}{6}d(gz,gw) \\ \leq & \frac{1}{2}\left[\max\left\{ \begin{array}{l} d(gx,gu),D(gx,F(x,y,z)),D(gu,F(u,v,w)),\\ d(gy,gv),D(gy,F(y,z,x)),D(gv,F(v,w,u)),\\ d(gz,gw),D(gz,F(z,x,y)),D(gw,F(w,u,v)),\\ \frac{1}{2}[D(gx,F(u,v,w)) + D(gu,F(x,y,z))],\\ \frac{1}{2}[D(gz,F(w,u,v)) + D(gv,F(z,x,y))],\\ \frac{1}{2}[D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ \frac{1}{2}[D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ \frac{1}{2}[D(gy,F(v,w,u)) + D(gw,F(v,w,u)),\\ d(gz,gw),D(gz,F(z,x,y)),D(gv,F(w,u,v)),\\ \frac{1}{2}[D(gy,F(v,w,u)) + D(gw,F(x,y,z))],\\ \frac{1}{2}[D(gy,F(v,w,u)) + D(gw,F(x,y,z))],\\ \frac{1}{2}[D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ \frac{1}{2}[D(gz,F(w,u,v)) + D(gw,F(z,x,y))],\\ \frac{1}{2}[D(gz,F(w,u,v)) + D(gw,F(z,x,y))],\\ \frac{1}{2}[D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ \end{array} \right\} \right]. \end{array}$$

Similarly, we obtain the same result for $u^2 + v^2 + w^2 < x^2 + y^2 + z^2$. Thus the contractive condition (2.1) is satisfied for all $x, y, z, u, v, w \in X$ with $x, y, z, u, v, w \in [0, 1)$. Again, for all $x, y, z, u, v, w \in X$ with $x, y, z \in [0, 1)$ and u, v, w = 1, we have

$$\begin{array}{l} H(F(x,y,z),F(u,v,w)) \\ = & \displaystyle \frac{x^2 + y^2 + z^2}{6} \\ \leq & \displaystyle \frac{1}{6} \max\left\{x^2,u^2\right\} + \frac{1}{6} \max\left\{y^2,v^2\right\} + \frac{1}{6} \max\left\{z^2,w^2\right\} \\ \leq & \displaystyle \frac{1}{6} d(gx,gu) + \frac{1}{6} d(gy,gv) + \frac{1}{6} d(gz,gw) \\ \leq & \displaystyle \frac{1}{2} \left[\max \left\{ \begin{array}{l} d(gx,gu), D(gx,F(x,y,z)), D(gu,F(u,v,w)), \\ d(gy,gv), D(gy,F(y,z,x)), D(gv,F(v,w,u)), \\ d(gz,gw), D(gz,F(z,x,y)), D(gw,F(w,u,v)), \\ \frac{1}{2} [D(gx,F(u,v,w)) + D(gu,F(x,y,z))], \\ \frac{1}{2} [D(gy,F(v,w,u)) + D(gw,F(z,x,y))], \\ \frac{1}{2} [D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ d(gz,gw), D(gz,F(z,x,y)), D(gw,F(w,u,v)), \\ d(gz,gw), D(gz,F(z,x,y)), D(gw,F(w,u,v)), \\ \frac{1}{2} [D(gy,F(v,w,u)) + D(gw,F(x,y,z))], \\ \frac{1}{2} [D(gz,F(w,u,v)) + D(gw,F(z,x,y))], \\ \frac{1}{2} [D(gz,F(w,u,v)) + D(gw,F(z,x,y))] \\ \end{array} \right\}$$

Thus the contractive condition (2.1) is satisfied for all $x, y, z, u, v, w \in X$ with $x, y, z \in [0, 1)$ and u, v, w = 1. Similarly, we can see that the contractive condition (2.1) is satisfied for all $x, y, z, u, v, w \in X$ with x, y, z, u, v, w = 1. Hence, the hybrid pair $\{F, g\}$ satisfies the contractive condition (2.1), for all $x, y, z, u, v, w \in X$. In addition, all the other conditions of Theorem 2.1 are satisfied and z = (0, 0, 0) is a common tripled fixed point of hybrid pair $\{F, g\}$. The function $F: X \times X \times X \to CB(X)$ involved in this example is not continuous at the point $(1, 1, 1) \in X \times X \times X$.

Remark 2.1. We improve, extend and generalize the result of Ding, Li and Radenovic [17] in the following sense:

(i) We prove our result in the settings of multivalued mapping and for hybrid pair of mappings while Ding, Li and Radenovic [17] proved result for single valued mappings.

- (ii) We prove tripled coincidence and common tripled fixed point theorem while Ding, Li and Radenovic [17] proved coupled coincidence and common coupled fixed point theorems.
- (iii) To prove the result we consider non complete metric space and the space is also not partially ordered.
- (iv) The mapping $F: X \times X \times X \to CB(X)$ is discontinuous and not satisfying mixed g-monotone property.
- (v) The function $\varphi : [0, \infty) \to [0, \infty)$ involved in our theorem and example is discontinuous.
- (vi) Our proof is simple and different from the other results in the existing literature.

If we put g = I (*I* is the identity mapping) in Theorem 2.1, then we have the following result:

Corollary 2.2. Let (X, d) be a complete metric space, $F : X \times X \times X \to CB(X)$ be a mapping satisfying

$$\left. \begin{array}{c} H(F(x,y,z),F(u,v,w)) \\ \leq & \varphi \left[\max \left\{ \begin{array}{c} d(x,u),D(x,F(x,y,z)),D(u,F(u,v,w)), \\ d(y,v),D(y,F(y,z,x)),D(v,F(v,w,u)), \\ d(z,w),D(z,F(z,x,y)),D(w,F(w,u,v)), \\ \frac{1}{2}[D(x,F(u,v,w))+D(u,F(x,y,z))], \\ \frac{1}{2}[D(y,F(v,w,u))+D(v,F(y,z,x))], \\ \frac{1}{2}[D(z,F(w,u,v))+D(w,F(z,x,y))] \end{array} \right\} \right],$$

for all $x, y, z, u, v, w \in X$, where $\varphi \in \Phi$. Then F has a tripled fixed point.

If we put $\varphi(t) = kt$ where 0 < k < 1 in Theorem 2.1, then we have the following result:

Corollary 2.3. Let (X, d) be a metric space. Assume $F : X \times X \times X \to CB(X)$ and $g : X \to X$ be two mappings satisfying

$$\left. \begin{array}{l} H(F(x,y,z),F(u,v,w)) \\ \leq & k \max \left\{ \begin{array}{l} d(gx,gu),D(gx,F(x,y,z)),D(gu,F(u,v,w)), \\ d(gy,gv),D(gy,F(y,z,x)),D(gv,F(v,w,u)), \\ d(gz,gw),D(gz,F(z,x,y)),D(gw,F(w,u,v)), \\ \frac{1}{2}\left[D(gx,F(u,v,w))+D(gu,F(x,y,z))\right], \\ \frac{1}{2}\left[D(gy,F(v,w,u))+D(gv,F(y,z,x))\right], \\ \frac{1}{2}\left[D(gz,F(w,u,v))+D(gw,F(z,x,y))\right] \\ \end{array} \right\},$$

for all $x, y, z, u, v, w \in X$, where 0 < k < 1. Furthermore assume that $F(X \times X \times X) \subseteq g(X)$ and g(X) is a complete subset of X. Then F and g have a tripled coincidence point. Moreover, F and g have a common tripled fixed point, if one of the following conditions holds:

- (a) F and g are w-compatible.lim_{n→∞} gⁿx = u, lim_{n→∞} gⁿy = v and lim_{n→∞} gⁿz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g is continuous at u, v and w.
- (b) g is F-weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and gz are fixed points of g, that is, g²x = gx, g²y = gy and g²z = gz.
- (c) g is continuous at x, y and z. $\lim_{n\to\infty} g^n u = x$, $\lim_{n\to\infty} g^n v = y$ and $\lim_{n\to\infty} g^n w = z$ for some $(x, y, z) \in C(F, g)$ and for some $u, v, w \in X$.
- (d) g(C(g, F)) is singleton subset of C(g, F).

If we put g = I (*I* is the identity mapping) in Corollary 2.3, then we have the following result:

Corollary 2.4. Let (X, d) be a complete metric space, $F : X \times X \times X \to CB(X)$ be a mapping satisfying

$$\begin{array}{c} H(F(x,y,z),F(u,v,w)) \\ \leq & k \max \left\{ \begin{array}{l} d(x,u),D(x,F(x,y,z)),D(u,F(u,v,w)), \\ d(y,v),D(y,F(y,z,x)),D(v,F(v,w,u)), \\ d(z,w),D(z,F(z,x,y)),D(w,F(w,u,v)), \\ \frac{1}{2}\left[D(x,F(u,v,w))+D(u,F(x,y,z))\right], \\ \frac{1}{2}\left[D(y,F(v,w,u))+D(v,F(y,z,x))\right], \\ \frac{1}{2}\left[D(z,F(w,u,v))+D(w,F(z,x,y))\right] \end{array} \right\}, \end{array} \right\},$$

for all $x, y, z, u, v, w \in X$. Then F has a tripled fixed point.

References

- 1. M. Abbas, H. Aydi & E. Karapinar: Tripled fixed point theorems for multivalued nonlinear contraction mappings in partially ordered metric spaces. *Hindawi publication corporation, Abstract and Applied Analysis* Volume 2011, Article ID 812690, 12 pages.
- M. Abbas, L. Ciric, B. Damjanovic & M.A. Khan: Coupled coincidence point and common fixed point theorems for hybrid pair of mappings. *Fixed Point Theory Appl.* doi:10.1186/1687-1812-2012-4 (2012).
- S.M. Alsulami & A. Alotaibi: Tripled coincidence points for monotone operators in partially ordered metric spaces. *International Mathematical Forum* 7 (2012), no. 37, 1811-1824.

- H. Aydi, E. Karapinar & M. Postolache: Tripled coincidence point theorems for weak φ-contractions in partially ordered metric spaces. *Fixed Point Theory Appl.* doi:10.1186/1687-1812-2012-44 (2012).
- H. Aydi & E. Karapinar: Triple fixed points in ordered metric spaces. Bulletin of Mathematical Analysis and Applications 4 (2012), no. 1, 197-207.
- 6. _____: New Meir-Keeler type tripled fixed point theorems on partially ordered metric spaces. *Hindawi publishing corporation Mathematical Problems in Engineering* Volume 2012, Article ID 409872, 17 pages.
- H. Aydi, E. Karapinar & C. Vetro: Meir-Keeler type contractions for tripled fixed points. Acta Mathematica Scientia 6 (2012), 2119-2130.
- V. Berinde & M. Borcut: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. *Nonlinear Anal. Theory, Methods and Applications* 74 (2011), no. 15, 4889-4897.
- V. Berinde & M. Borcut: Tripled coincidence theorems of contractive type mappings in partially ordered metric spaces. *Applied Mathematics and Computation* 218 (2012), no. 10, 5929-5936.
- T. G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. *Nonlinear Anal.* 65 (2006), no. 6, 1379-1393.
- 11. P. Charoensawan: Tripled fixed points theorems of φ -contractive mixed monotone operators on partially ordered metric spaces. *Applied Mathematical Sciences* **6** (2012), no. 105, 5229 5239.
- B. Deshpande: Common fixed point for set and single valued functions without continuity and compatibility. *Mathematica Moravica* 11 (2007), 27-38.
- B. Deshpande & R. Pathak: Fixed point theorems for noncompatible discontinuous hybrid pairs of mappings on 2-metric spaces. *Demonstratio Mathematica* XLV (2012), no. 1, 143-154.
- B. Deshpande & S. Chouhan: Common fixed point theorems for hybrid pairs of mappings with some weaker conditions in 2-metric spaces. *Fasciculi Mathematici* 46 (2011), 37-55.
- B. Deshpande & S. Chouhan: Fixed points for two hybrid pairs of mappings satisfying some weaker conditions on non-complete metric spaces. SEA Bull. of Math. 35 (2011), 851-858.
- B. Deshpande & R. Pathak: Hybrid pairs of mappings with some weaker conditions in consideration of common fixed point on 2-metric spaces. *Mathematica Moravica* 16 (2012), no. 2, 1-12.
- H.S. Ding, L. Li & S. Radenovic: Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces. *Fixed Point Theory Appl.* doi:10.1186/1687-1812-2012-96 (2012).

- I. Kubiaczyk & B. Deshpande: Coincidence point for non-compatible multivalued maps satisfying an implicit relation. *Demonstratio Mathematica* XXXIX (2006), no. 4, 555-562.
- I. Kubiaczyk & B. Deshpande: A common fixed point theorem for multivalued mappings through T-weak commutativity. *Mathematica Moravica* 10 (2006), 55-60.
- <u>—</u>: Common fixed point of multivalued mappings without continuity. *Fasciculi Mathematici* 37 (2007), no. 9, 19-26.
- 21. _____: Non-compatibility, discontinuity in consideration of common fixed point of set and single valued maps. *SEA Bull Math.* **32** (2008), 467-474.
- V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. *Nonlinear Analysis: Theory, Method and Applications* **70** (2009), no. 12, 4341-4349.
- J.T. Markin: Continuous dependence of fixed point sets. Proceedings of the American Mathematical Society 38 (1947), 545-547.
- B. Samet & C. Vetro: Coupled fixed point, F-invariant set and fixed point of N-order. Ann. Funct. Anal. 1 (2010), 46-56.
- S. Sharma & B. Deshpande: Compatible multivalued mappings satisfying an implicit relation. SEA Bull Math. 30 (2006), 535-540.
- 26. ____: Fixed point theorems for set and single valued maps without continuity and compatibility. *Demonstratio Mathematica* **XL** (2007), no. 3, 649-658.
- 27. S. Sharma, B. Deshpande & R. Pathak: Common fixed point theorems for hybrid pairs of mappings with some weaker conditions. *Fasciculi Mathematici* **39** (2008), 71-84.

^aDepartment of Mathematics, Govt. Arts & Science P.G. College, Ratlam- 457001 (M.P.) India

 $Email \ address: {\tt bhavnadeshpande@yahoo.com}$

^bDepartment of Mathematics, Govt. P. G. Madhav Science College, Ujjain (MP), India *Email address:* sksharma2005@yahoo.com

 $^{\rm c}{\rm Department}$ of Mathematics, Govt. P. G. Arts and Science College, Ratlam-457001 (MP), India

Email address: amrishhanda83@gmail.com

38