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TRIPLED FIXED POINT THEOREM FOR HYBRID PAIR OF
MAPPINGS UNDER GENERALIZED NONLINEAR

CONTRACTION

Bhavana Deshpande a, ∗, Sushil Sharma b and Amrish Handa c

Abstract. In this paper, we introduce the concept of w−compatibility and weakly
commutativity for hybrid pair of mappings F : X ×X ×X → 2X and g : X → X
and establish a common tripled fixed point theorem under generalized nonlinear
contraction. An example is also given to validate our result. We improve, extend
and generalize various known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed
bounded subsets of X. Let D(x, A) denote the distance from x to A ⊂ X and H

denote the Hausdorff metric induced by d, that is,

D(x,A) = inf
a∈A

d(x, a)

and H(A, B) = max{sup
a∈A

D(a,B), sup
b∈B

D(b, A)}, for all A,B ∈ CB(X).

Markin [23] initiated the study of fixed points for multivalued contractions and
non-expansive maps using the Hausdorff metric. Fixed points existence for various
multivalued contractive mappings has been studied by several authors under different
conditions. For details, we refer the reader to [1, 2, 12, 13, 14, 15, 16, 18, 19, 20,

21, 25, 26, 27] and the reference therein. Multivalued maps theory has application
in control theory, convex optimization, differential equations and economics.

Bhaskar and Lakshmikantham [10], established some coupled fixed point theo-
rems and apply these to study the existence and uniqueness of solution for periodic
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boundary value problems. Lakshmikantham and Ciric [22] proved coupled coinci-
dence and common coupled fixed point theorems for nonlinear contractive mappings
in partially ordered complete metric spaces and extended the results of Bhaskar and
Lakshmikantham [10].

Berinde and Borcut [8] introduced the concept of tripled fixed point for single
valued mappings in partially ordered metric spaces. In [8], Berinde and Borcut
established the existence of tripled fixed point of single-valued mappings in partially
ordered metric spaces. For more details on tripled fixed point theory, we also refer
the reader to [3, 4, 5, 6, 7, 9, 11]. Samet and Vetro [24] introduced the notion of fixed
point of N order in case of single-valued mappings. In particular for N=3 (tripled
case), we have the following definition:

Definition 1.1 ([24]). Let X be a non-empty set and F : X × X × X → X be a
given mapping. An element (x, y, z) ∈ X ×X ×X is called a tripled fixed point of
the mapping F if

F (x, y, z) = x, F (y, z, x) = y and F (z, x, y) = z.

In this paper, we prove a common tripled fixed point for hybrid pair of mappings
under generalized nonlinear contraction. We improve, extend and generalize the
results of Ding, Li and Radenovic [17] and Abbas, Ciric, Damjanovic and Khan [2].
The effectiveness of the present work is validated with the help of suitable example.

2. Main Results

First we introduce the following:

Definition 2.1. Let X be a nonempty set, F : X×X×X → 2X (a collection of all
nonempty subsets of X) and g be a self-map on X. An element (x, y, z) ∈ X×X×X

is called

(1) a tripled fixed point of F if x ∈ F (x, y, z), y ∈ F (y, z, x) and z ∈ F (z, x,

y).
(2) a tripled coincidence point of hybrid pair {F, g} if g(x) ∈ F (x, y, z), g(y) ∈

F (y, z, x) and g(z) ∈ F (z, x, y).
(3) a common tripled fixed point of hybrid pair {F, g} if x = g(x) ∈ F (x, y, z),

y = g(y) ∈ F (y, z, x) and z = g(z) ∈ F (z, x, y).

We denote the set of tripled coincidence points of mappings F and g by C(F, g).
Note that if (x, y, z) ∈ C(F, g), then (y, z, x) and (z, x, y) are also in C(F, g).
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Definition 2.2. Let F : X ×X ×X → 2X be a multivalued mapping and g be a
self-map on X. The hybrid pair {F, g} is called w-compatible if g(F (x, y, z)) ⊆ F (gx,

gy, gz) whenever (x, y, z) ∈ C(F, g).

Definition 2.3. Let F : X ×X ×X → 2X be a multivalued mapping and g be a
self-map on X. The mapping g is called F -weakly commuting at some point (x, y,

z) ∈ X3 if g2x ∈ F (gx, gy, gz), g2y ∈ F (gy, gz, gx) and g2z ∈ F (gz, gx, gy).

Lemma 2.1. Let (X, d) be a metric space. Then, for each a ∈ X and B ∈ CB(X),
there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a, B) = infb∈B d(a, b).

Proof. Let a ∈ X and B ∈ CB(X). Since the function d is continuous. Thus, by
the closedness of B, there exists b0 ∈ B such that infb∈B d(a, b) = d(a, b0), that is,
D(a,B) = d(a, b0).

Let Φ denote the set of all functions ϕ : [0, ∞) → [0, ∞) satisfying
(iϕ) ϕ is non-decreasing,
(iiϕ) limn→∞ ϕn(t) = 0 for all t > 0.

It is clear that ϕ(t) < t for each t > 0. In fact, if ϕ(t0) ≥ t0 for some t0 > 0,

then, since ϕ is non-decreasing, ϕn(t0) ≥ t0 for all n ∈ N, which contradicts with
limn→∞ ϕn(t0) = 0. In addition, it is easy to see that ϕ(0) = 0. ¤

Theorem 2.1. Let (X, d) be a metric space. Assume F : X ×X ×X → CB(X)
and g : X → X be two mappings satisfying

(2.1)

H(F (x, y, z), F (u, v, w))

≤ ϕ




max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]








,

for all x, y, z, u, v, w ∈ X, where ϕ ∈ Φ. Furthermore assume that F (X×X×X) ⊆
g(X) and g(X) is a complete subset of X. Then F and g have a tripled coincidence
point. Moreover, F and g have a common tripled fixed point, if one of the following
conditions holds:

(a) F and g are w-compatible.limn→∞ gnx = u, limn→∞ gny = v and limn→∞ gnz

= w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g is con-
tinuous at u, v and w.
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(b) g is F -weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and gz

are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(g, F )) is singleton subset of C(g, F ).

Proof. Let x0, y0, z0 ∈ X be arbitrary. Then F (x0, y0, z0), F (y0, z0, x0) and
F (z0, x0, y0) are well defined. Choose gx1 ∈ F (x0, y0, z0), gy1 ∈ F (y0, z0, x0) and
gz1 ∈ F (z0, x0, y0), because F (X×X×X) ⊆ g(X). Since F : X×X×X → CB(X),
therefore by Lemma 2.1, there exist u1 ∈ F (x1, y1, z1), u2 ∈ F (y1, z1, x1) and
u3 ∈ F (z1, x1, y1) such that

d(gx1, u1) ≤ H(F (x0, y0, z0), F (x1, y1, z1)),

d(gy1, u2) ≤ H(F (y0, z0, x0), F (y1, z1, x1)),

d(gz1, u3) ≤ H(F (z0, x0, y0), F (z1, x1, y1)).

Since F (X×X×X) ⊆ g(X), there exist x2, y2, z2 ∈ X such that u1 = gx2, u2 = gy2

and u3 = gz2. Thus

d(gx1, gx2) ≤ H(F (x0, y0, z0), F (x1, y1, z1)),

d(gy1, gy2) ≤ H(F (y0, z0, x0), F (y1, z1, x1)),

d(gz1, gz2) ≤ H(F (z0, x0, y0), F (z1, x1, y1)).

Continuing this process, we obtain sequences {xn}, {yn} and {zn} in X such that for
all n ∈ N, we have gxn+1 ∈ F (xn, yn, zn), gyn+1 ∈ F (yn, zn, xn) and gzn+1 ∈ F (zn,

xn, yn) such that

d(gxn, gxn+1)

≤ H(F (xn−1, yn−1, zn−1), F (xn, yn, zn))

≤ ϕ




max





d(gxn−1, gxn), D(gxn−1, F (xn−1, yn−1, zn−1)),
D(gxn, F (xn, yn, zn)), d(gyn−1, gyn),

D(gyn−1, F (yn−1, zn−1, xn−1)), D(gyn, F (yn, zn, xn)),
d(gzn−1, gzn), D(gzn−1, F (zn−1, xn−1, yn−1)),

D(gzn, F (zn, xn, yn)),
D(gxn−1,F (xn,yn,zn))+D(gxn,F (xn−1,yn−1,zn−1))

2 ,
D(gyn−1,F (yn,zn,xn))+D(gyn,F (yn−1,zn−1,xn−1))

2 ,
D(gzn−1,F (zn,xn,yn))+D(gzn,F (zn−1,xn−1,yn−1))

2
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≤ ϕ




max





d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
d(gyn−1, gyn), d(gyn−1, gyn), d(gyn, gyn+1),
d(gzn−1, gzn), d(gzn−1, gzn), d(gzn, gzn+1),

d(gxn−1,gxn+1)+d(gxn,gxn)
2 , d(gyn−1,gyn+1)+d(gyn,gyn)

2 ,
d(gzn−1,gzn+1)+d(gzn,gzn)

2








≤ ϕ


max





d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),
d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1),
d(gxn−1,gxn+1)

2 , d(gyn−1,gyn+1)
2 , d(gzn−1,gzn+1)

2






 .

Thus

(2.2) d(gxn, gxn+1) ≤ ϕ


max





d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gxn, gxn+1),
d(gyn, gyn+1), d(gzn, gzn+1),

d(gxn−1,gxn+1)
2 , d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2






 .

Similarly

(2.3) d(gyn, gyn+1) ≤ ϕ


max





d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gxn, gxn+1),
d(gyn, gyn+1), d(gzn, gzn+1),

d(gxn−1,gxn+1)
2 , d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2






 ,

(2.4) d(gzn, gzn+1) ≤ ϕ


max





d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gxn, gxn+1),
d(gyn, gyn+1), d(gzn, gzn+1),

d(gxn−1,gxn+1)
2 , d(gyn−1,gyn+1)

2 , d(gzn−1,gzn+1)
2






 .

Combining (2.2), (2.3) and (2.4), we get

max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}

≤ ϕ


max





d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),
d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1),
d(gxn−1,gxn+1)

2 , d(gyn−1,gyn+1)
2 , d(gzn−1,gzn+1)

2








≤ ϕ




max





d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),
d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1),

d(gxn−1,gxn)+d(gxn,gxn+1)
2 ,

d(gyn−1,gyn)+d(gyn,gyn+1)
2 ,

d(gzn−1,gzn)+d(gzn,gzn+1)
2








≤ ϕ

[
max

{
d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),
d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1),

}]
.
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Thus

(2.5)
max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}

≤ ϕ

[
max

{
d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),
d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)

}]
.

If we suppose that

max
{

d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),
d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)

}

= max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} ,

then by (2.5), (iϕ) and (iiϕ), we have

max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}
≤ ϕ [max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}]
< max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} ,

which is a contradiction. Thus, we must have

max
{

d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),
d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)

}

= max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)} .

Hence by (2.5), we have for all n ∈ N,

max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}
≤ ϕ [max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)}]
≤ ϕn [max {d(gx0, gx1), d(gy0, gy1), d(gz0, gz1)}] .

Thus

(2.6) max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} ≤ ϕn(δ),

where

δ = max {d(gx0, gx1), d(gy0, gy1), d(gz0, gz1)} .

Without loss of generality, one can assume that max{d(gx0, gx1), d(gy0, gy1), d(gz0,

gz1)} 6= 0. In fact, if this is not true, then gx0 = gx1 ∈ F (x0, y0, z0), gy0 =
gy1 ∈ F (y0, z0, x0) and gz0 = gz1 ∈ F (z0, x0, y0), that is, (x0, y0, z0) is a tripled
coincidence point of F and g.
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Thus, for m, n ∈ N with m > n, by triangle inequality and (2.6), we get

d(gxn, gxm+n)

≤ d(gxn, gxn+1) + d(gxn+1, gxn+2) + ... + d(gxn+m−1, gxm+n)

≤ max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}
+max {d(gxn+1, gxn+2), d(gyn+1, gyn+2), d(gzn+1, gzn+2)}
+... + max {d(gxn+m−1, gxn+m+1), d(gyn+m−1, gyn+m), d(gzn+m−1, gzn+m)}

≤ ϕn(δ) + ϕn+1(δ) + ... + ϕn+m−1(δ)

≤
n+m−1∑

i=n

ϕi(δ),

which implies, by (iiϕ), that {gxn} is a Cauchy sequence in g(X). Similarly we
obtain that {gyn} and {gzn} are Cauchy sequences in g(X). Since g(X) is complete,
there exist x, y, z ∈ X such that

(2.7) lim
n→∞ gxn = gx, lim

n→∞ gyn = gy and lim
n→∞ gzn = gz.

Now, since gxn+1 ∈ F (xn, yn, zn), gyn+1 ∈ F (yn, zn, xn) and gzn+1 ∈ F (zn, xn,

yn), therefore by using condition (2.1), we get

(2.8) D(gxn+1, F (x, y, z)) ≤ H(F (xn, yn, zn), F (x, y, z)) ≤ ϕ[∆n],

(2.9) D(gyn+1, F (y, z, x)) ≤ H(F (yn, zn, xn), F (y, z, x)) ≤ ϕ[∆n],

(2.10) D(gzn+1, F (z, x, y)) ≤ H(F (zn, xn, yn), F (z, x, y)) ≤ ϕ[∆n],

where

∆n = max





d(gxn, gx), d(gxn, gxn+1), D(gx, F (x, y, z)),
d(gyn, gy), d(gyn, gyn+1), D(gy, F (y, z, x)),
d(gzn, gz), d(gzn, gzn+1), D(gz, F (z, x, y)),

1
2 [D(gxn, F (x, y, z)) + d(gx, gxn+1)] ,
1
2 [D(gyn, F (y, z, x)) + d(gy, gyn+1)] ,
1
2 [D(gzn, F (z, x, y)) + d(gz, gzn+1)]





.

Since limn→∞ gxn = gx, limn→∞ gyn = gy and limn→∞ gzn = gz, there exists n0 ∈ N
such that for all n > n0,

∆n = max {D(gx, F (x, y, z)), D(gy, F (y, z, x)), D(gz, F (z, x, y))} .
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Combining this with (2.8), (2.9) and (2.10), we get for all n > n0,

(2.11)
max

{
D(gxn+1, F (x, y, z)), D(gyn+1, F (y, z, x)),

D(gzn+1, F (z, x, y))

}

≤ ϕ

[
max

{
D(gx, F (x, y, z)), D(gy, F (y, z, x)),

D(gz, F (z, x, y))

}]
.

Now, we claim that

(2.12) max {D(gx, F (x, y, z)), D(gy, F (y, z, x)), D(gz, F (z, x, y))} = 0.

If this is not true, then

max {D(gx, F (x, y, z)), D(gy, F (y, z, x)), D(gz, F (z, x, y))} > 0.

Thus, by (2.11), (iϕ) and (iiϕ), we get for all n > n0,

max
{

D(gxn+1, F (x, y, z)), D(gyn+1, F (y, z, x)),
D(gzn+1, F (z, x, y))

}

≤ ϕ

[
max

{
D(gx, F (x, y, z)), D(gy, F (y, z, x)),

D(gz, F (z, x, y))

}]

< max
{

D(gx, F (x, y, z)), D(gy, F (y, z, x)),
D(gz, F (z, x, y))

}
.

Thus

(2.13)
max

{
D(gxn+1, F (x, y, z)), D(gyn+1, F (y, z, x)),

D(gzn+1, F (z, x, y))

}

< max
{

D(gx, F (x, y, z)), D(gy, F (y, z, x)),
D(gz, F (z, x, y))

}

Letting n →∞ in (2.13), by using (2.7), we obtain

max {D(gx, F (x, y, z)), D(gy, F (y, z, x)), D(gz, F (z, x, y))}
< max {D(gx, F (x, y, z)), D(gy, F (y, z, x)), D(gz, F (z, x, y))} ,

which is a contradiction. So (2.12) holds. Thus, it follows that

gx ∈ F (x, y, z), gy ∈ F (y, z, x) and gz ∈ F (z, x, y),

that is, (x, y, z) is a tripled coincidence point of F and g. Hence C(F, g) is nonempty.
Suppose now that (a) holds. Assume that for some (x, y, z) ∈ C(F, g),

(2.14) lim
n→∞ gnx = u, lim

n→∞ gny = v and lim
n→∞ gnz = w,

where u, v, w ∈ X. Since g is continuous at u, v and w. We have, by (2.14), that u,

v and w are fixed points of g, that is,

(2.15) gu = u, gv = v and gw = w.
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As F and g are w-compatible, so for all n ≥ 1,

(2.16)
gnx ∈ F (gn−1x, gn−1y, gn−1z),
gny ∈ F (gn−1y, gn−1z, gn−1x),
gnx ∈ F (gn−1z, gn−1x, gn−1y).

Now, by using (2.1) and (2.16), we obtain

(2.17)
D(gnx, F (u, v, w)) ≤ H(F (gn−1x, gn−1y, gn−1z), F (u, v, w)) ≤ ϕ[∇n],
D(gny, F (v, w, u)) ≤ H(F (gn−1y, gn−1z, gn−1x), F (v, w, u)) ≤ ϕ[∇n],
D(gnz, F (w, u, v)) ≤ H(F (gn−1z, gn−1x, gn−1y), F (w, u, v)) ≤ ϕ[∇n],

where

∇n = max





d(gnx, gu), D(gu, F (u, v, w)), D(gnx,F (u,v,w))+d(gu,gnx)
2 ,

d(gny, gv), D(gv, F (v, w, u)), D(gny,F (v,w,u))+d(gv,gny)
2 ,

d(gnz, gw), D(gw, F (w, u, v)), D(gnz,F (w,u,v))+d(gw,gnz)
2





.

By (2.14) and (2.15), there exists n0 ∈ N such that for all n > n0,

∇n = max {D(gu, F (u, v, w)), D(gv, F (v, w, u)), D(gw, F (w, u, v))} .

Combining this with (2.17), we get for all n > n0,

(2.18) max





D(gnx, F (u, v, w)),
D(gny, F (v, w, u)),
D(gnz, F (w, u, v))



 ≤ ϕ


max





D(gu, F (u, v, w)),
D(gv, F (v, w, u)),
D(gw, F (w, u, v))






 .

Now, we claim that

(2.19) max {D(gu, F (u, v, w)), D(gv, F (v, w, u)), D(gw, F (w, u, v))} = 0.

If this is not true, then

max {D(gu, F (u, v, w)), D(gv, F (v, w, u)), D(gw, F (w, u, v))} > 0.

Thus, by (2.18), (iϕ) and (iiϕ), we get for all n > n0,

(2.20) max





D(gnx, F (u, v, w)),
D(gny, F (v, w, u)),
D(gnz, F (w, u, v))



 < max





D(gu, F (u, v, w)),
D(gv, F (v, w, u)),
D(gw, F (w, u, v))



 .

On taking limit as n →∞ in (2.20), by using (2.14) and (2.15), we get

max {D(gu, F (u, v, w)), D(gv, F (v, w, u)), D(gw, F (w, u, v))}
< max {D(gu, F (u, v, w)), D(gv, F (v, w, u)), D(gw, F (w, u, v))} ,

which is a contradiction. So (2.19) holds. Thus, it follows that

(2.21) gu ∈ F (u, v, w), gv ∈ F (v, w, u) and gw ∈ F (w, u, v).
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Now, from (2.15) and (2.21), we have

u = gu ∈ F (u, v, w), v = gv ∈ F (v, w, u) and w = gw ∈ F (w, u, v),

that is, (u, v, w) is a common tripled fixed point of F and g.

Suppose now that (b) holds. Assume that for some (x, y, z) ∈ C(F, g), g is F -
weakly commuting, that is, g2x ∈ F (gx, gy, gz), g2y ∈ F (gy, gz, gx), g2z ∈ F (gz,

gx, gy) and g2x = gx, g2y = gy, g2z = gz. Thus gx = g2x ∈ F (gx, gy, gz), gy =
g2y ∈ F (gy, gz, gx) and gz = g2z ∈ F (gz, gx, gy), that is, (gx, gy, gz) is a common
tripled fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x, y, z) ∈ C(F, g) and for
some u, v, w ∈ X, limn→∞ gnu = x, limn→∞ gnv = y and limn→∞ gnw = z. Since
g is continuous at x, y and z. We have that x, y and z are fixed point of g, that
is, gx = x, gy = y and gz = z. Since (x, y, z) ∈ C(F, g), therefore, we obtain

x = gx ∈ F (x, y, z), y = gy ∈ F (y, z, x)

and

z = gz ∈ F (z, x, y),

that is, (x, y, z) is a common tripled fixed point of F and g.

Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x, x)}. Then {x} = {gx} =
F (x, x, x). Hence (x, x, x) is tripled fixed point of F and g. ¤

Example 2.1. Suppose that X = [0, 1], equipped with the metric d : X ×X → [0,

+∞) defined by d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X. Let F :
X ×X ×X → CB(X) be defined as

F (x, y, z) =





{0}, for x, y, z = 1
[
0, x2+y2+z2

6

]
, for x, y, z ∈ [0, 1)

and g : X → X be defined as

g(x) = x2, for all x ∈ X.

Define ϕ : [0, ∞) → [0, ∞) by

ϕ(t) =

{
t
2 , for t 6= 1
3
4 , for t = 1.

Now, for all x, y, z, u, v, w ∈ X with x, y, z, u, v, w ∈ [0, 1), we have
Case (a) If x2 + y2 + z2 = u2 + v2 + w2, then
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H(F (x, y, z), F (u, v, w))

=
u2 + v2 + w2

6

≤ 1
6

max
{
x2, u2

}
+

1
6

max
{
y2, v2

}
+

1
6

max
{
z2, w2

}

≤ 1
6
d(gx, gu) +

1
6
d(gy, gv) +

1
6
d(gz, gw)

≤ 1
2




max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]








≤ ϕ




max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]








.

Case (b) If x2 + y2 + z2 6= u2 + v2 + w2 with x2 + y2 + z2 < u2 + v2 + w2, then

H(F (x, y, z), F (u, v, w))

=
u2 + v2 + w2

6

≤ 1
6

max
{
x2, u2

}
+

1
6

max
{
y2, v2

}
+

1
6

max
{
z2, w2

}

≤ 1
6
d(gx, gu) +

1
6
d(gy, gv) +

1
6
d(gz, gw)

≤ 1
2




max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]








≤ ϕ




max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]








.
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Similarly, we obtain the same result for u2 + v2 + w2 < x2 + y2 + z2. Thus the
contractive condition (2.1) is satisfied for all x, y, z, u, v, w ∈ X with x, y, z, u, v,

w ∈ [0, 1). Again, for all x, y, z, u, v, w ∈ X with x, y, z ∈ [0, 1) and u, v, w = 1,

we have

H(F (x, y, z), F (u, v, w))

=
x2 + y2 + z2

6

≤ 1
6

max
{
x2, u2

}
+

1
6

max
{
y2, v2

}
+

1
6

max
{
z2, w2

}

≤ 1
6
d(gx, gu) +

1
6
d(gy, gv) +

1
6
d(gz, gw)

≤ 1
2




max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]








≤ ϕ




max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]








.

Thus the contractive condition (2.1) is satisfied for all x, y, z, u, v, w ∈ X with x,

y, z ∈ [0, 1) and u, v, w = 1. Similarly, we can see that the contractive condition
(2.1) is satisfied for all x, y, z, u, v, w ∈ X with x, y, z, u, v, w = 1. Hence,
the hybrid pair {F, g} satisfies the contractive condition (2.1), for all x, y, z, u,

v, w ∈ X. In addition, all the other conditions of Theorem 2.1 are satisfied and
z = (0, 0, 0) is a common tripled fixed point of hybrid pair {F, g}. The function
F : X ×X ×X → CB(X) involved in this example is not continuous at the point
(1, 1, 1) ∈ X ×X ×X.

Remark 2.1. We improve, extend and generalize the result of Ding, Li and Rade-
novic [17] in the following sense:

(i) We prove our result in the settings of multivalued mapping and for hybrid
pair of mappings while Ding, Li and Radenovic [17] proved result for single
valued mappings.
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(ii) We prove tripled coincidence and common tripled fixed point theorem while
Ding, Li and Radenovic [17] proved coupled coincidence and common cou-
pled fixed point theorems.

(iii) To prove the result we consider non complete metric space and the space is
also not partially ordered.

(iv) The mapping F : X ×X ×X → CB(X) is discontinuous and not satisfying
mixed g-monotone property.

(v) The function ϕ : [0, ∞) → [0, ∞) involved in our theorem and example is
discontinuous.

(vi) Our proof is simple and different from the other results in the existing lit-
erature.

If we put g = I (I is the identity mapping) in Theorem 2.1, then we have the
following result:

Corollary 2.2. Let (X, d) be a complete metric space, F : X ×X ×X → CB(X)
be a mapping satisfying

H(F (x, y, z), F (u, v, w))

≤ ϕ




max





d(x, u), D(x, F (x, y, z)), D(u, F (u, v, w)),
d(y, v), D(y, F (y, z, x)), D(v, F (v, w, u)),
d(z, w), D(z, F (z, x, y)), D(w, F (w, u, v)),

1
2 [D(x, F (u, v, w)) + D(u, F (x, y, z))] ,
1
2 [D(y, F (v, w, u)) + D(v, F (y, z, x))] ,
1
2 [D(z, F (w, u, v)) + D(w, F (z, x, y))]








,

for all x, y, z, u, v, w ∈ X, where ϕ ∈ Φ. Then F has a tripled fixed point.

If we put ϕ(t) = kt where 0 < k < 1 in Theorem 2.1, then we have the following
result:

Corollary 2.3. Let (X, d) be a metric space. Assume F : X ×X ×X → CB(X)
and g : X → X be two mappings satisfying

H(F (x, y, z), F (u, v, w))

≤ k max





d(gx, gu), D(gx, F (x, y, z)), D(gu, F (u, v, w)),
d(gy, gv), D(gy, F (y, z, x)), D(gv, F (v, w, u)),
d(gz, gw), D(gz, F (z, x, y)), D(gw, F (w, u, v)),

1
2 [D(gx, F (u, v, w)) + D(gu, F (x, y, z))] ,
1
2 [D(gy, F (v, w, u)) + D(gv, F (y, z, x))] ,
1
2 [D(gz, F (w, u, v)) + D(gw, F (z, x, y))]





,
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for all x, y, z, u, v, w ∈ X, where 0 < k < 1. Furthermore assume that F (X ×
X ×X) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have a tripled
coincidence point. Moreover, F and g have a common tripled fixed point, if one of
the following conditions holds:

(a) F and g are w-compatible.limn→∞ gnx = u, limn→∞ gny = v and limn→∞ gnz

= w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g is con-
tinuous at u, v and w.

(b) g is F -weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and gz

are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(g, F )) is singleton subset of C(g, F ).

If we put g = I (I is the identity mapping) in Corollary 2.3, then we have the
following result:

Corollary 2.4. Let (X, d) be a complete metric space, F : X ×X ×X → CB(X)
be a mapping satisfying

H(F (x, y, z), F (u, v, w))

≤ k max





d(x, u), D(x, F (x, y, z)), D(u, F (u, v, w)),
d(y, v), D(y, F (y, z, x)), D(v, F (v, w, u)),
d(z, w), D(z, F (z, x, y)), D(w, F (w, u, v)),

1
2 [D(x, F (u, v, w)) + D(u, F (x, y, z))] ,
1
2 [D(y, F (v, w, u)) + D(v, F (y, z, x))] ,
1
2 [D(z, F (w, u, v)) + D(w,F (z, x, y))]





,

for all x, y, z, u, v, w ∈ X. Then F has a tripled fixed point.
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