DOI QR코드

DOI QR Code

Immobilizing hydroxycholesterol with apatite on titanium surfaces to induce ossification

  • Chen, Cen (Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University) ;
  • Yang, Hyeong Cheol (Department of Dental Biomaterials Science, Seoul National University) ;
  • Lee, In-Seop (Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University)
  • Received : 2014.09.05
  • Accepted : 2014.10.05
  • Published : 2014.12.01

Abstract

Background: Immobilizing bioactive molecules and osteoconductive apatite on titanium implants have investigated direct ossification. In this study, hydroxycholesterol (HC) was immobilized with apatite on titanium through simply adsorption or sandwich-like coating. Three kinds of hydroxycholesterol were chosen to induce ossification: $20{\alpha}$-hydroxycholesterol ($20{\alpha}$-HC), 22(S)-hydroxycholesterol (22(S)-HC) and 25-hydroxycholesterol (25-HC).The effects of HC/apatite coating on ossification abilities were evaluated in vitro and in vivo. Results: At 6 d, adsorbed apatite/25-HC and apatite/22(S)-HC coating exhibited some cytotoxicity, while the cell viability of apatite/$20{\alpha}$-HC coating was similar as apatite coating. Immobilizing HC with apatite significantly enhanced the ALP activities compared with apatite coating. There was no significant difference in ALP value between adsorbed apatite/HC coating and sandwich-like apatite/HC/apatite coating. When compared with apatite coating, the mineral deposition improved by adsorbed HC with apatite at higher concentration in vivo. Conclusions: When compared with apatite coating, immobilizing HC with apatite coating induced the ossification in vitro and in vivo.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Ribeiro AL, Hammer P, Vaz LG, Rocha LA: Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study. Biomed Mater 2013, 8:065005. https://doi.org/10.1088/1748-6041/8/6/065005
  2. Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sorensen S, Jeppesen CS, Kraft DC, Bottiger J, Rasse M, Kloss F, Foss M: Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 2013, 34:5883-5890. https://doi.org/10.1016/j.biomaterials.2013.04.031
  3. Lavenus S, Berreur M, Trichet V, Pilet P, Louarn G, Layrolle P: Adhesion and Osteogenic Differentiation of Human Mesenchymal Stem Cells on Titanium Nanopores. Eur Cell Mater 2011, 22:84-96. https://doi.org/10.22203/eCM.v022a07
  4. Violant D, Galofre M, Nart J, Teles RP: In vitro evaluation of a multispecies oral biofilm on different implant surfaces. Biomed Mater 2014, 9:035007. https://doi.org/10.1088/1748-6041/9/3/035007
  5. Nayak S, Dey T, Naskar D, Kundu SC: The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials 2013, 34:2855-2864. https://doi.org/10.1016/j.biomaterials.2013.01.019
  6. Bayram C, Demirbilek M, Yalcin E, Bozkurt M, Dogan M, Denkbas EB: Osteoblast response on co-modified titanium surfaces via anodization and electrospinning. Appl Surf Sci 2014, 288:143-148. https://doi.org/10.1016/j.apsusc.2013.09.168
  7. Yazaki Y, Oyane A, Sogo Y, Ito A, Yamazaki A, Tsurushima H: Control of gene transfer on a DNA-fibronectin-apatite composite layer by the incorporation of carbonate and fluoride ions. Biomaterials 2011, 32:4896-4902. https://doi.org/10.1016/j.biomaterials.2011.03.021
  8. Wang XP, Oyane A, Tsurushima H, Sogo Y, Li X, Ito A: BMP-2 and ALP gene expression induced by a BMP-2 gene-fibronectin-apatite composite layer. Biomed Mater 2011, 6:045004. https://doi.org/10.1088/1748-6041/6/4/045004
  9. Bae SE, Choi J, Joung YK, Park K, Han DK: Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. J Control Release 2012, 160:676-684. https://doi.org/10.1016/j.jconrel.2012.04.021
  10. Lee HJ, Koo AN, Lee SW, Lee MH, Lee SC: Catechol-functionalized adhesive polymer nanoparticles for controlled local release of bone morphogenetic protein-2 from titanium surface. J Control Release 2013, 170:198-208. https://doi.org/10.1016/j.jconrel.2013.05.017
  11. Yan SG, Zhang J, Tu QS, Ye JH, Luo E, Schuler M, Kim MS, Griffin T, Zhao J, Duan XJ, Cochran DJ, Murray D, Yang PS, Chen J: Enhanced osseointegration of titanium implant through the local delivery of transcription factor SATB2. Biomaterials 2011, 32:8676-8683. https://doi.org/10.1016/j.biomaterials.2011.07.072
  12. Chen C, Lee IS, Zhang SM, Yang HC: Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco's phosphate-buffered saline solution containing CaCl(2) with and without fibronectin. Acta Biomater 2010, 6:2274-2281. https://doi.org/10.1016/j.actbio.2009.11.033
  13. Guillot R, Gilde F, Becquart P, Sailhan F, Lapeyrere A, Logeart-Avramoglou D, Picart C: The stability of BMP loaded polyelectrolyte multilayer coatings on titanium. Biomaterials 2013, 34:5737-5746. https://doi.org/10.1016/j.biomaterials.2013.03.067
  14. Huri PY, Huri G, Yasar U, Ucar Y, Dikmen N, Hasirci N, Hasirci V: A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects. Biomed Mater 2013, 8:045009. https://doi.org/10.1088/1748-6041/8/4/045009
  15. Wang H, Zou Q, Boerman OC, Nijhuis AW, Jansen JA, Li Y, Leeuwenburgh SC: Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J Control Release 2013, 166:172-181. https://doi.org/10.1016/j.jconrel.2012.12.015
  16. Hokugo A, Saito T, Li A, Sato K, Tabata Y, Jarrahy R: Stimulation of bone regeneration following the controlled release of water-insoluble oxysterol from biodegradable hydrogel. Biomaterials 2014, 35:5565-5571. https://doi.org/10.1016/j.biomaterials.2014.03.018
  17. Kha HT, Basseri B, Shouhed D, Richardson J, Tetradis S, Hahn TJ, Parhami F: Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res 2004, 19:830-840. https://doi.org/10.1359/jbmr.040115
  18. Johnson JS, Meliton V, Kim WK, Lee KB, Wang JC, Nguyen K, Yoo D, Jung ME, Atti E, Tetradis S, Pereira RC, Magyar C, Nargizyan T, Hahn TJ, Farouz F, Thies S, Parhami F: Novel Oxysterols Have Pro-Osteogenic and Anti- Adipogenic Effects In Vitro and Induce Spinal Fusion In Vivo. J Cell Biochem 2011, 112:1673-1684. https://doi.org/10.1002/jcb.23082
  19. Chen C, Zhang SM, Lee IS: Immobilizing bioactive molecules onto titanium implants to improve osseointegration. Surf Coat Tech 2013, 228:S312-S317. https://doi.org/10.1016/j.surfcoat.2012.05.112
  20. Son KM, Park HC, Kim NR, Lee IS, Yang HC: Enhancement of the ALP activity of C3H10T1/2 cells by the combination of an oxysterol and apatite. Biomed Mater 2010, 5:044107. https://doi.org/10.1088/1748-6041/5/4/044107
  21. Chen C, Qiu ZY, Zhang SM, Lee IS: Biomimetic fibronectin/mineral and osteogenic growth peptide/mineral composites synthesized on calcium phosphate thin films. Chem Commun (Camb) 2011, 47:11056-11058. https://doi.org/10.1039/c1cc13480a
  22. Desai ES, Tang MY, Ross AE, Gemeinhart RA: Critical factors affecting cell encapsulation in superporous hydrogels. Biomed Mater 2012, 7:024108. https://doi.org/10.1088/1748-6041/7/2/024108
  23. D'Alessandro D, Pertici G, Moscato S, Metelli MR, Danti S, Nesti C, Berrettini S, Petrini M, Danti S: Processing large-diameter poly(L-lactic acid) microfiber mesh/mesenchymal stromal cell constructs via resin embedding: an efficient histologic method. Biomed Mater 2014, 9:045007. https://doi.org/10.1088/1748-6041/9/4/045007
  24. Ares MP, Porn-Ares MI, Thyberg J, Juntti-Berggren L, Berggren PO, Diczfalusy U, Kallin B, Bjorkhem I, Orrenius S, Nilsson J: Ca2+ channel blockers verapamil and nifedipine inhibit apoptosis induced by 25-hydroxycholesterol in human aortic smooth muscle cells. J Lipid Res 1997, 38:2049-2061.
  25. Dugas B, Charbonnier S, Baarine M, Ragot K, Delmas D, Menetrier F, Lherminier J, Malvitte L, Khalfaoui T, Bron A: Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: cytoprotective effects and prevention of VEGF secretion by resveratrol. Eur J Nutr 2010, 49:435-446. https://doi.org/10.1007/s00394-010-0102-2
  26. Hokugo A, Sorice S, Parhami F, Yalom A, Li A, Zuk P, Jarrahy R: A novel oxysterol promotes bone regeneration in rabbit cranial bone defects. J Tissue Eng Regen Med 2013. doi:10.1002/term.1799.
  27. Helmschrodt C, Becker S, Thiery J, Ceglarek U: Preanalytical standardization for reactive oxygen species derived oxysterol analysis in human plasma by liquid chromatography-tandem mass spectrometry. Biochem Biophys Res Commun 2014, 446:726-730. https://doi.org/10.1016/j.bbrc.2013.12.087
  28. Yang JX: Study on biological functions of magnesium alloy/cobaltchromium alloy surface coating. In PhD thesis. Tsinghua University, Materials Science and Engineering; 2011.