Synthesis and Biological Activity of (2-Substituted-4-methylthiazol-5-yl) (4-substituted piperazin-1-yl)methanone Derivatives

Pravin C. Mhaske*, Shivaji H. Shelke[†], Hemant N. Raundal[†], and Rahul P. Jadhav[†]

Post Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambahu College, Tilak Road, Pune, India 411 030, (Affiliated to University of Pune). *E-mail: mhaskepc18@gmail.com *Department of Chemistry, HPT Arts and RYK Science College, Nashik India-422 005

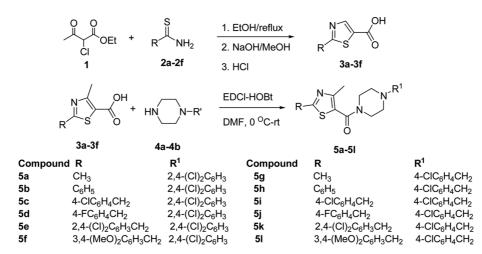
(Received September 2, 2013; Accepted December 17, 2013)

ABSTRACT. In the present study a novel series of (2-substituted-4-methylthiazol-5-yl)(4-substituted piperazin-1-yl)methanone derivatives were synthesized by reaction of 2-substituted-4-methylthiazole-5-carboxylic acid with N-substituted benzyl piperazine by using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDCl) and 1-hydroxybenzotriazole (HOBt) in DMF. All the newly synthesized compounds were characterized by spectral methods. The title compounds were screened for in vitro anti-bacterial activity. Most of the compounds show moderate to good antimicrobial activity.

Key words: Thiazole, Piperazine, EDCl-HOBt, Antimicrobial activity

Thiazole and their derivatives have attracted continuing interest over the years because of their varied biological activities.¹ 1,3-Thiazole nucleus containing compounds have exhibited a broad range of biological activities.^{2–13} 5-Azole carboxamide derivatives showed antianoxic activity.¹⁴ The aryl imidazolyl carboxamide derivatives were shown to be cannabinoid CB₁ receptor antagonist.^{15,16} Based on these observations, a series of (2-substituted-4-methylth-iazol-5-yl)(4-substituted piperazin-1-yl)methanone derivatives were synthesized and subjected to microbial screening.

The synthesis of (2-methyl, phenyl or benzyl-substituted-4-methylthiazol-5-yl)(4-phenyl or benzyl substituted piperazin-1-yl)methanone is illustrated in *Scheme* 1. Ethyl-2chloro-3-oxobutanoate 1 on reaction with methyl, phenyl or benzyl substituted thioamides 2a-2f afforded corresponding ethyl-2-methyl, phenyl or benzyl-substituted-4methylthiazole-5-carboxylate which on alkaline hydrolysis furnished corresponding 2-methyl, phenyl or benzylsubstituted-4-methylthiazole-5-carboxylic acids 3a-3f. The structures of acid 3a-3f were confirmed by spectral data. The IR spectrum of acid 3a displayed the broad absorption band at 2550-3400 cm⁻¹ characteristic of -COOH group and a band at 1702 cm⁻¹ due to stretching frequency of C=O.


The reaction of 3a-3f with N-aryl or benzyl substituted piperazine 4a-b in the presence of EDC-HOBt in DMF furnished the target compounds 5a-5l in good yields. The yields, melting points and molecular formula of synthesized compounds 5a-5l are listed in *Table* 1. The structures of synthesized compounds were characterized by IR, ¹H NMR, ¹³C NMR, and mass spectroscopy and all the spectral data are in accordance with the assumed structures.

The IR spectrum of 5d showed the absorption band at 1699–1647 cm⁻¹ and 1610–1590 cm⁻¹ which indicated the presence of O=C-N (amide) and C=N functionality respectively. The ¹H NMR spectrum of **5d** revealed a singlet at δ 2.44 for thiazole-CH₃ protons, two peaks at δ 3.13 and 3.72 integrated for four protons of piperazine and a singlet at δ 4.24 integrated for two methylene protons of benzyl group. Seven aromatic protons resonated at δ 6.69–7.30. Further the ¹³C NMR spectrum of **5d** revealed four signals in aliphatic region. The aromatic ipso carbon attached to fluorine appeared as doublet with ${}^{1}J=244.4$ Hz (C-F). The ortho and the meta carbon atoms in the same ring also appeared as doublets with ${}^{2}J=21.3$ Hz and ${}^{3}J=8.0$ Hz. All other aromatic carbon and carbonyl carbon atoms appeared between δ 115.7 and 170.3. The structure was further confirmed by LC mass spectral data which showed peak at 464.1 $(M+H)^+$.

BIOLOGICAL ACTIVITY

Antimicrobial Activity

The in vitro antibacterial activity was performed against Gram-positive bacteria including *S. aureus*, *B. subtilis* and Gram-negative bacteria including *E. coli* and *K. pneumonia*. The antifungal activity was screened against fungi including *F. solani*, *C. lunata* and *A. niger*. To evaluate the activity of the synthesized compounds, the zone of inhibition were determined. The in vitro antimicrobial screen-

Scheme 1.

Table 1. Yield and physical data of compounds 5a-5l

Compound	R	\mathbb{R}^1	Mp (°C)	Yield (%)	Molecular Formula
5a	CH ₃	2,4-(Cl) ₂ C ₆ H ₃	82-84	70	C16H17Cl2N3OS
5b	C_6H_5	2,4-(Cl) ₂ C ₆ H ₃	136–138	72	$C_{21}H_{19}Cl_2N_3OS$
5c	4-ClC ₆ H ₄ CH ₂	2,4-(Cl) ₂ C ₆ H ₃	128-130	70	C22H20Cl3N3OS
5d	4-FC ₆ H ₄ CH ₂	2,4-(Cl) ₂ C ₆ H ₃	86-88	70	C22H20Cl2FN3OS
5e	2,4-(Cl) ₂ C ₆ H ₃ CH ₂	2,4-(Cl) ₂ C ₆ H ₃	68-70	65	C22H19Cl4N3OS
5f	3,4-(MeO) ₂ C ₆ H ₃ CH ₂	2,4-(Cl) ₂ C ₆ H ₃	89–91	74	$C_{24}H_{25}Cl_2N_3O_3S$
5g	CH ₃	4-ClC ₆ H ₄ CH ₂	78-79	75	C17H20CIN3OS
5h	C_6H_5	4-ClC ₆ H ₄ CH ₂	83-85	65	C22H22CIN3OS
5i	4-ClC ₆ H ₄ CH ₂	4-ClC ₆ H ₄ CH ₂	86-88	65	$C_{23}H_{23}Cl_2N_3OS$
5j	4-FC ₆ H ₄ CH ₂	4-ClC ₆ H ₄ CH ₂	160-162	70	C23H23CIFN3OS
5k	2,4-(Cl) ₂ C ₆ H ₃ CH ₂	4-ClC ₆ H ₄ CH ₂	132-135	75	$C_{23}H_{22}Cl_3N_3OS$
51	3,4-(MeO) ₂ C ₆ H ₃ CH ₂	4-ClC ₆ H ₄ CH ₂	78-80	60	C25H28CIN3O3S

Table 2. Antibacterial screening results of the compounds 5a-5l (Zone diameter of growth inhibition in mm)

Commit	S. a	S. aureous		B. subtilis		E. coli		K. pneumonia	
Compd. Conc. µ	ıg/ml 100	200	100	200	100	200	100	200	
5a	26	30	24	27	25	29	23	26	
5b	26	29	29	31	31	34	28	31	
5c	24	27	27	29	28	29	26	28	
5d	10	12	10	13	9	12	8	10	
5e	33	36	37	39	39	44	34	37	
5g	36	39	34	37	31	34	29	33	
5h	31	34	32	35	37	38	34	36	
5i	9	12	8	13	7	12	6	10	
5j	28	31	28	32	27	33	26	29	
5k	38	43	37	41	36	40	37	39	
51	7	9	8	9	7	9	6	8	
Ciprofloxacin	34	38	36	42	40	45	37	42	
Chloramphenicol	35	39	38	41	40	44	42	45	

ing results of tested compounds are listed in Table 2 and 3.

Most of the synthesized compounds (except compounds **5d**, **5i** and **5l**) exhibited moderate to excellent antimicro-

bial activities. It is noteworthy that compounds **5e** and **5k** $(R = 2,4-(Cl)_2C_6H_3CH_2-, R^1 = 2,4-(Cl)_2C_6H_3- and 4-ClC_6H_4CH_2, respectively), compound$ **5g** $<math>(R = CH_3-, R^1 = 4-ClC_6H_4CH_2-)$

Compd.	Conc. µg/ml	F. solani		C. h	C. lunata		A. niger	
		100	200	100	200	100	200	
5a		16	19	17	20	15	18	
5b		19	21	22	24	17	21	
5c		24	27	23	25	20	24	
5d		29	32	27	31	22	24	
5e		16	19	17	19	15	16	
5g		14	19	14	18	13	17	
5h		17	20	18	22	16	21	
5i		17	19	18	23	18	21	
5j		21	23	18	20	17	21	
5k		16	20	15	17	16	19	
51		24	26	24	27	18	20	
Ketoconazole		38	42	38	42	38	42	

Table 3. Antifungal screening results of the compounds 5a-51 (Zone diameter of growth inhibition in mm)

and **5h** ($R = C_6H_5-$, $R^1 = 4$ -ClC₆H₄CH₂-) showed excellent activity against all bacterial strain as compared to standard drugs. Even compounds **5a**, **5b**, **5c** and **5j** showed good antibacterial activities against most of the strains.

The result of antifungal activity revealed that all the tested compounds show moderate to good antifungal activity as compared to the standard drug ketoconazole. Compound **5c** (R = 4-ClC₆H₄CH₂-, R¹ = 2,4-(Cl)₂C₆H₃-), **5d** (R = 4-FC₆H₄CH₂-, R¹ = 2,4-(Cl)₂C₆H₃-) and **5l** (R = 3,4-(MeO)₂ C₆H₃CH₂-, R¹ = 4-ClC₆H₄CH₂-) exhibited good activities against all the fungal species. However compounds **5d**, **5i** and **5l** were inactive against bacterial strain but showed good antifungal activity.

Thus, it is concluded that compounds with $R = CH_3 -$, $C_6H_5 -$ and 2,4-diClC₆H₃CH₂- show good to excellent antibacterial activity.

EXPERIMENTAL

Melting points were determined in an open capillary on Veego melting point apparatus and are uncorrected. The purity of the compounds was checked on silica gel-G plates. The compounds **5a–1** was purified on silica gel (100–200) column chromatography using ethyl acetate: hexane (2:8) as eluent. Infrared spectra (cm⁻¹) were recorded in KBr on a Shimadzu Model FTIR-435 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ solution on a Varian Mercury YH-300 spectrometer operating at 300 MHz for ¹H and 75 MHz for ¹³C. Chemical shifts are expressed relative to tetramethylsilane (TMS) and were reported as δ (ppm). Mass spectral (MS) measurements were made on a Jeol-JMS-DX 303 mass spectrometer. The isotopic peak at M+2 was observed in the mass spectrum of

all the compounds due to S, Br and/or Cl.

General Procedure

2-Methyl, phenyl or benzyl substituted-4-methylthiazole-5-carboxylic acid (3a-3f)

Mixture of 2-chloro-3-oxo ethyl butanoate (0.05 mol) and substituted thioamides (0.055 mol) in methanol (50 mL) was refluxed for 5–6 hours. After completion of the reaction, as monitored on TLC, 2N NaOH (20 mL) was added and refluxed further for 4 hours. Methanol was distilled off and the mixture was acidified with 4N HCl to pH 2. The precipitated product was filtered, washed with water and recrystallized from aqueous ethanol.

(2-methyl, phenyl or benzyl-substituted-4-methylthiazol-5-yl)(4-phenyl or benzyl substituted piperazin-1-yl)methanone (5a–5l)

A mixture of 2-substituted-4-methylthiazole-5-carboxylic acid (3a-f) (1 mmol), DIPEA (0.35 mL, 2 mmol), HOBt (0.14 g, 1 mmol) in DMF (10 mL) was cooled to 0 °C. To this N-aryl or benzyl piperazine (4a-b) (1 mmol) was added followed by EDC.HCl (0.19 g, 1 mmol) at 0 °C and stirred overnight at room temperature. The reaction was quenched with water and the product was filtered, washed with water and purified by column chromatography using ethyl acetate:hexane (2:8).

(4-(2,4-Dichlorophenyl)piperazin-1-yl)(2,4-dimethylthiazol-5-yl)methanone (5a)

IR (KBr): 3056, 2971, 2911, 2802, 1631, 1542, 1480, 1417, 1251, 1130, 1006, 934, 830, 822 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.42 (s, 3H), 2.68 (s, 3H), 3.18 (s, 4H), 3.76 (s, 4H), 6.72 (m, 1H), 6.95 (s, 1H), 7.24–7.45 (m, 1H); ¹³C

NMR (CDCl₃, 75 MHz): 15.0, 20.1, 48.1, 49.3, 115.4, 121.6, 126.8, 127.0, 128.9, 132.5, 149.3, 151.7, 164.2, 168.5; LCMS: 370.0 (M+H)⁺. Anal. calcd. for $C_{16}H_{17}Cl_2N_3OS$: C, 51.90; H, 4.63; N, 11.35. Found: C, 51.79; H, 4.51; N, 11.22.

(4-(2,4-Dichlorophenyl)piperazin-1-yl)(4-methyl-2-phenylthiazol-5-yl)methanone (5b)

IR (KBr): 2991, 2891, 2850, 1616, 1541, 1438, 1365, 1242, 1151, 1010, 947, 850, 813 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.44 (s, 3H), 3.11 (s, 4H), 3.71 (s, 4H), 6.66 (dd, J = 3 and 9 Hz, 1H), 6.88, (d, J = 3 Hz, 1H), 7.21 (d, J = 9 Hz, 1H), 7.35–7.37 (m, 3H), 7.81–7.85 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): 16.6, 49.1, 115.9, 117.9, 123.3, 123.7, 126.5, 129.0, 130.5, 130.6, 132.7, 132.9, 150.0, 153.1, 162.6, 167.9; LCMS: 432.1 (M+H)⁺. Anal. calcd. for C₂₁H₁₉Cl₂N₃OS: C, 58.34; H, 4.43; N, 9.72. Found: C, 58.26; H, 4.37; N, 9.59.

(2-(4-Chlorobenzyl)-4-methylthiazol-5-yl)(4-(2,4-dichlorophenyl)piperazin-1-yl)methanone (5c)

IR (KBr): 3059, 2930, 2879, 2823, 1631, 1475, 1427, 1365, 1271, 1240, 1157, 1089, 1016, 956, 873 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.41 (s, 3H), 3.16 (s, 4H), 3.61 (s, 4H), 3.84 (s, 2H), 6.75 (dd, J= 2.4 and 8.4 Hz, 1 H), 7.00 (d, J= 2.4 Hz, 1H), 7.30 (d, J= 8.4 Hz, 1H), 7.37–7.42 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz): 14.9, 41.0, 47.9, 51.0, 115.2, 117.8, 125.0, 125.5, 128.1, 128.8, 130.6, 131.4, 131.6, 134.3, 148.9, 152.0, 164.5, 169.1; LCMS: 480.0 (M+H)⁺. Anal. calcd. for C₂₂H₂₀Cl₃N₃OS: C, 54.95; H, 4.19; N, 8.74. Found: C, 54.88; H, 4.11; N, 8.63.

(2-(4-Fluorobenzyl)-4-methylthiazol-5-yl)(4-(2,4-dichlorophenyl)piperazin-1-yl)methanone (5d)

IR (KBr): 3076, 2908, 2831, 1947, 1506, 1435, 1348, 1246, 1138, 1006, 852, 763 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.44 (s, 3H), 3.13 (s, 4H), 3.72 (s, 4H), 4.24 (s, 2H), 6.71 (dd, J=2.75 and 9 Hz, 1H), 6.83, (d, J=2.70 Hz, 1H), 7.01 (t, J=8.7 Hz, 2H), 7.24–7.30 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz): 16.2, 38.4, 48.6, 48.8, 115.4, 117.6, 122.8, 124.0, 130.3, 130.5, 132.5, 132.6, 132.7, 149.9, 151.7, 161.5, 162.4, 170.3; LCMS: 464.1 (M+H)⁺. Anal. calcd. for C₂₂H₂₀Cl₂FN₃OS: C, 56.90; H, 4.34; N, 9.05. Found: C, 56.80; H, 4.23; N, 8.94.

(2-(2,4-Dichlorobenzyl)-4-methylthiazol-5-yl)(4-(2,4dichlorophenyl)piperazin-1-yl)methanone (5e)

IR (KBr): 3084, 2928, 2833, 1631, 1558, 1487, 1242, 997, 954, 856, 788 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.36 (s, 3H), 3.06 (s, 4H), 3.64 (s, 4H), 4.29 (s, 2H), 6.64 (dd, *J*=3

and 9 Hz, 1H), 6.86, (d, J = 3 Hz, 1H), 7.13–7.23 (m, 3H), 7.33 (d, J = 2.1 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): 16.4, 29.6, 36.4, 49.0, 115.4, 117.9, 123.2, 124.2, 127.5, 129.5, 130.5, 131.9, 132.8, 133.4, 134.0, 134.7, 150.0, 151.9, 162.5, 168.1; LCMS: 514.0 (M+H)⁺. Anal. calcd. for C₂₂H₁₉Cl₄N₃OS: C, 51.28; H, 3.72; N, 8.15. Found: C, 51.20; H, 3.60; N, 8.04.

(2-(3,4-Dimethoxybenzyl)-4-methylthiazol-5-yl)(4-(2,4dichlorophenyl)piperazin-1-yl)methanone (5f)

IR (KBr): 3031, 2965, 2910, 2824, 1631, 1524, 1418, 1315, 1251, 1140, 1089, 1006, 750, 819 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.43 (s, 3H), 3.14 (s, 4H), 3.73 (s, 4H), 3.86 (s, 3H), 3.87 (s, 3H), 4.19 (s, 2H), 6.72 (dd, J = 3 and 9 Hz, 1H), 6.80–6.87, (m, 3H), 6.94 (d, J = 3 Hz, 1H), 7.28 (d, J = 9 Hz 1H); ¹³C NMR (CDCl₃, 75 MHz): 15.4, 39.2, 46.4, 51.1, 56.2, 56.3, 115.2, 117.0, 117.6, 119.1, 123.4, 125.2, 126.0, 128.1, 129.5, 131.5, 145.8, 148.4, 149.7, 152.2, 163.1, 168.2; LCMS: 506.1 (M+H)⁺. Anal. calcd. for C₂₄H₂₅Cl₂N₃O₃S: C, 56.92; H, 4.98; N, 8.30. Found: C, 56.78; H, 4.86; N, 8.19.

(4-(4-Chlorobenzyl)piperazin-1-yl)(2,4-dimethylthiazol-5yl)methanone (5g)

IR (KBr) 3060, 2976, 2908, 2808, 1639, 1546, 1487, 1429, 1265, 1138, 1006, 935, 831, 756 cm⁻¹; ¹H NMR: 2.37 (s, 7H), 2.60 (s, 3H), 3.59 (s, 4H), 4.23 (s, 2H), 7.15–7.34 (m, 4H); ¹³C NMR: 15.1, 20.2, 48.9, 59.1, 65.3, 116.0, 128.9, 130.5, 132.9, 135.1, 152.0, 164.5, 168.3; LCMS: 350.1 (M+H)⁺. Anal. calcd. for $C_{17}H_{20}CIN_3OS: C$, 58.36; H, 5.76; N, 12.01. Found: C, 58.23; H, 5.67; N, 11.89.

(4-(4-Chlorobenzyl)piperazin-1-yl)(4-methyl-2-phenylthiazol-5-yl)methanone (5h)

IR (KBr): 3065, 2956, 2900, 2815, 1630, 1484, 1440, 1321, 1250, 1005, 865, 815 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.26 (s, 4H), 2.35 (s, 3H), 3.49 (s, 4H), 4.09 (s, 2H), 7.01–7.24 (m, 7H), 7.74–7.77 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): 18.1, 51.5, 74.7, 77.2, 119.4, 126.2, 127.4, 128.4, 128.7, 130.2, 133.6, 140.1, 140.6, 152.2, 162.2, 167.6; LCMS: 412.1 (M+H)⁺. Anal. calcd. for $C_{22}H_{22}CIN_3OS$: C, 64.14; H, 5.38; N, 10.20. Found: C, 64.08; H, 5.31; N, 10.09.

(2-(4-Chlorobenzyl)-4-methylthiazol-5-yl)(4-(4-chlorobenzyl)piperazin-1-yl)methanone (5i)

IR (KBr): 3068, 2949, 2912, 2809, 1628, 1504, 1478, 1324, 1248, 1006, 860, 809 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.32 (s, 3H), 2.60 (s, 4H), 3.32 (s, 4H), 4.21 (s, 2H), 4.23 (s, 2H), 7.15–7.36 (m, 8H); ¹³C NMR (CDCl₃, 75 MHz): 14.2, 47.7, 51.2, 61.2, 127.2, 127.5, 128.3, 128.5, 128.9, 129.7,

131.2, 132.6, 133.8, 135.5, 140.4, 153.2, 168.9; LCMS: 460.1 $(M+H)^+$. Anal. calcd. for $C_{23}H_{23}Cl_2N_3OS$: C, 60.00; H, 5.04; N, 9.13. Found: C, 59.88; H, 5.00; N, 9.02.

(4-(4-Chlorobenzyl)piperazin-1-yl)(2-(4-fluorobenzyl)-4methylthiazol-5-yl)methanone (5j)

IR (KBr): 3051, 2908, 2823, 1629, 1487, 1305, 1240, 1132, 1006, 846, 746 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.41 (s, 4H), 2.44 (s, 3H), 3.62 (s, 4H), 4.24 (s, 2H), 4.26 (s, 2H), 7.03 (t, J = 8.4 Hz, 2H), 7.20–7.40 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz): 16.2, 38.5, 51.6, 60.1, 75.0, 115.5, 124.5, 127.5, 128.6, 128.9, 130.4, 132.8, 141.0, 151.3, 160.2, 163.5, 170.0; LCMS: 444.1 (M+H)⁺. Anal. calcd. for C₂₃H₂₃ClFN₃OS: C, 62.22; H, 5.22; N, 9.46. Found: C, 62.09; H, 5.17; N, 9.33.

(2-(2,4-Dichlorobenzyl)-4-methylthiazol-5-yl)(4-(4-chlorobenzyl)piperazin-1-yl)methanone (5k)

IR (KBr): 3070, 2970, 2910, 2808, 1627, 1545, 1477, 1440, 1311, 1257, 1099, 1006, 864, 813 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.30 (s, 7H), 3.49 (s, 4H), 4.12 (s, 2H), 4.23 (s, 2H), 7.06–7.29 (m, 7H); ¹³C NMR (CDCl₃, 75 MHz): 16.2, 36.3, 51.6, 74.9, 124.5, 127.3, 127.5, 128.6, 128.9, 129.4, 131.8, 133.5, 133.8, 134.6, 140.4, 141.2, 151.3, 162.2, 167.7; LCMS: 494.1 (M+H)⁺. Anal. calcd. for $C_{23}H_{22}Cl_3N_3OS$: C, 55.82; H, 4.48; N, 8.49. Found: C, 55.69; H, 4.36; N, 8.35.

(2-(3,4-Dimethoxybenzyl)-4-methylthiazol-5-yl)(4-(4chlorobenzyl)piperazin-1-yl)methanone (5l)

IR (KBr): 3024, 2974, 2918, 2810, 1626, 1533, 1429, 1317, 1249, 1141, 1095, 1004, 754, 709 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): 2.37 (s, 4H), 2.62 (s, 3H), 3.58 (s, 4H), 3.83 (s, 6H), 4.17 (s, 2H), 4.21 (s, 2H), 6.81 (t, J = 8.4 Hz, 2H), 7.15–7.35 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz): 15.2, 39.8, 48.0, 55.3, 56.2, 56.3, 64.3, 115.1, 116.8, 117.5, 123.3, 128.8, 129.7, 130.5, 132.9, 133.6, 146.0, 148.6, 152.1, 163.1, 168.2; LCMS: 485.2 (M+H)⁺. Anal. calcd. for C₂₅H₂₈ClN₃O₃S: C, 61.78; H, 5.81; N, 8.65. Found: C, 61.64; H, 5.70; N, 8.49.

Antimicrobial Activity

The synthesized compounds **5a–51** were screened for their in vitro antimicrobial activity against the standard strains *B. subtilis, S. aureus* (Gram-positive) and *E. coli, K. pneumonia* (Gram-negative) by the disk diffusion method.^{17,18} Disks measuring 6 mm in diameter were punched from whatman no.1 filter paper. Batches of 100 disks were dispensed to each screw-caped bottle and sterilized by dry heat at 145 °C for one hour. The test compounds were prepared with 100 µg/mL and 200 µg/mL concentration in dimethyl sulfoxide (DMSO). Disks of each concentration were placed in nutrient agar medium inoculated with fresh bacteria strains separately. Ciprofloxacin and Chloramphenicol was used as positive controls and DMSO was used as negative control. The incubation was carried out at 37 °C for 24 h. The diameter of the zone of growth inhibition around each well was measured after incubation using vernier caliper.

The compounds were screened for their antifungal activity against *F. solani*, *C. lunata* and *A. niger* in DMSO by disc diffusion method under standard conditions using Sabourad Dextrose Agar medium as described by NCCLS.¹⁹ Sterile filter paper discs (6 mm diameter) containing specific amount of anti fungal agent (100 μ g for the synthesized compounds) were placed on the surface of an agar plate inoculated with the standardized suspension of microorganisms tested. The plates were incubated at 37 °C for 2 days for evaluating antifungal activity. The diameters of inhibition zones (in mm) were measured. Ketoconazole was used as positive control.

CONCLUSION

In summary, we have synthesized a series of novel (2methyl, phenyl or benzyl-substituted-4-methylthiazol-5yl)(4-phenyl or benzyl substituted piperazin-1-yl)methanone (**5a–5l**) and screened for their antimicrobial activity. The in vitro antimicrobial results revealed that the compounds **5e**, **5g**, **5h** and **5k** show significant antibacterial activity while compounds **5a**, **5b**, **5c** and **5j** showed good antibacterial activities. All the tested compounds showed moderate to good antifungal activity. The antimicrobial activity results make them interesting lead molecules for further synthetic and biological evaluation. Further studies are in progress to acquire more information regarding structure activity relationship.

Acknowledgments. The authors are thankful to University Grant Commission, New Delhi for financial support. Garware Research Center, University of Pune and IIT Mumbai, India is gratefully acknowledged for providing spectral analysis facilities. And the publication cost of this paper was supported by the Korean Chemical Society.

REFERENCES

- Hutchinson, I.; Jennings, S. A.; Vishnuvajjala, B. R.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2002, 45, 744.
- 2. Nicolaou, K. C.; Roschanger, F.; Vourloumis, D. Angew.

Synthesis and Biological Activity of (2-Substituted-4-methylthiazol-5-yl)(4-substituted piperazin-1-yl)methanone Derivatives 67

Chem. Int. Ed. 1998, 37, 2014.

- Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. J. Antibiot. 1998, 51, 275.
- Suzuki, Y.; Ojika, M.; Sakagami, Y.; Fudou, R.; Yamanaka, S. *Tetrahedron* **1998**, *54*, 11399.
- EI-Subbagh, H. I.; Al-Obaid, A.M. Eur. J. Med. Chem. 1996, 31, 1017.
- Zhang, C.; Zink, D. L.; Ushio, M.; Burgess, B.; Onishi, R.; Masurekar, P.; Barrett, J. F.; Singh, S. B. *Bioorg. Med. Chem.* 2008, *16*, 8818.
- Kalkhambkar, R. G.; Kulkarni, G. M.; Shivkumar, H.; Rao, N. R. *Eur. J. Med. Chem.* **2007**, *42*, 1272.
- Franklin, P. X.; Pillai, A. D.; Rathod, P. D.; Yerande, S.; Nivsarkar, M.; Padh, K. K.; Sudarsanam, V. *Eur. J. Med. Chem.* 2008, *43*, 129.
- Zitouni, G. T.; Ozdemir, A.; Kaplancikli, Z. A.; Benkli, K.; Chevallet, P.; Akalin, G. *Eur. J. Med. Chem.* 2008, 43, 981.
- Bekhit, A. A.; Ashour, H. M. A.; Abdel Ghany, Y. S.; Bekhit, A. E. A.; Baraka, A. *Eur. J. Med. Chem.* **2008**, *43*, 456.
- 11. Karegoudar, P.; Karthikeyan, M. S.; Prasad, D. J.; Mahal-

inga, M.; Holla, B. S.; Kumari, N. S. Eur. J. Med. Chem. 2008, 43, 261.

- 12. Verma, A.; Saraf, S. K. Eur. J. Med. Chem. 2008, 43, 897.
- 13. Kumar, A.; Rajput, C. S. Eur. J. Med. Chem. 2009, 44, 83.
- 14. Misturu, O.; Atsushi, K.; Hiroyoshi, S.; Hisashi, T. *Chem. Pharma Bull.* **1995**, *43*, 947.
- Kim, J. Y.; Seo, H. J.; Lee, S.-H.; Jung, M. E.; Ahn, K. W.; Kim, J. M.; Lee, J. H. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 142.
- Sidique, S.; Ardecky, R.; Su, Y.; Narisawa, S.; Brown, B.; Millan, J. L.; Sergienko, E.; Cosford, N. D. P. *Bioorg. Med. Chem. Lett.* 2009, 19, 222.
- Collins, H. A.; *Microbiological Methods*, 2nd ed; Butterworth: London, 1976.
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically NCCLS Approval Standards, Wayne, PA, USA, 2003.
- NCCLS Approval Standard Document M2-A7, National Committee for Clinical Laboratory Standards, Vilanova, PA, USA, 2000.