Acknowledgement
Supported by : University of Kashan
References
- ANSYS Help System, Analysis guide theory refrence, Version 12.
- Baumgart, A. (2002), "A mathematical model for wind turbine blades", J. Sound Vib.,251(1), 1-12. https://doi.org/10.1006/jsvi.2001.3806
- Baxevanou, C.A., Chaviaropoulos, P.K., Voutsinas, S.G. and Vlachos, N.S. (2008), "Evaluation study of a Navier-Stokes CFD aeroelastic model of wind turbine airfoils in classical flutter", J. Wind Eng. Ind. Aerod., 96(8), 1425-1443. https://doi.org/10.1016/j.jweia.2008.03.009
- Eggleston, D.M. and Stoddard, F.S. (1987), Wind turbine engineering design, Springer.
- Fazelzadeh, S.A., Mazidi, A. and Kalantari, H. (2009), "Bending-torsional flutter of wings with an attached mass subjected to a follower force", J. Sound Vib., 323(1), 148-162. https://doi.org/10.1016/j.jsv.2009.01.002
- Fung, Y.C. (2002), An introduction to the theory of aeroelasticity, Courier Dover Publications, New York.
- Ghasemi, A.R. (2000), Structural design of composite blades of wind turbine, M. Sc. Thesis, University of Science and Technology, Tehran, Iran.
- Guo, S. (2007), "Aeroelastic optimization of an aerobatic aircraft wing structure", Aerospace Sci. Technol., 11(5), 396-404. https://doi.org/10.1016/j.ast.2007.01.003
- Hodges, D.H. and Pierce, G.A. (2002), Introduction to structural dynamics and aeroelasticity, Cambridge University Press.
- JAR-23 (1994), Joint Aviation Requirements, Normal, utility, aerobatic and commuter category aeroplanes.
- Jureczko, M.E.Z.Y.K., Pawlak, M. and Mezyk, A. (2005), "Optimisation of wind turbine blades", J. Mater. Process. Tech., 167(2), 463-471. https://doi.org/10.1016/j.jmatprotec.2005.06.055
- Larsen, J.W. and Nielsen, S.R. (2007), "Nonlinear parametric instability of wind turbine wings", J. Sound Vib., 299(1), 64-82. https://doi.org/10.1016/j.jsv.2006.06.055
- Lee, J.W., Lee, J.S., Han, J.H. and Shin, H.K. (2012), "Aeroelastic analysis of wind turbine blades based on modified strip theory", J. Wind Eng. Ind. Aerod., 110, 62-69. https://doi.org/10.1016/j.jweia.2012.07.007
- Lee, J.W., Kim, J.K., Han J.H. and Shin H.K. "Active load control for wind turbine blades using trailing edge flap", Wind Struct., 16(3), 249-261. https://doi.org/10.12989/was.2013.16.3.249
- Petrini, F., Li, H. and Bontempi, F. (2010), "Basis of design and numerical modeling of offshore wind turbines", Struct. Eng. Mech.,36(5),599-624. https://doi.org/10.12989/sem.2010.36.5.599
- Shokrieh, M.M. and Taheri-berooz, F. (2001),"Wing instability of a full composite aircraft", J. Compos. Struct.,54(2), 335-340. https://doi.org/10.1016/S0263-8223(01)00107-6
- Tenguria, N., Mittal N.D. and Ahmed, S. (2013), "Structural analysis of horizontal axis wind turbine blade", Wind Struct., 16(3), 241-248. https://doi.org/10.12989/was.2013.16.3.241
- Tsai, S.W. (1988), Composites design, (4th Ed.), Dayton, OH: Think Composites.
Cited by
- Statistical wind prediction and fatigue analysis for horizontal-axis wind turbine composite material blade under dynamic loads vol.9, pp.9, 2017, https://doi.org/10.1177/1687814017724088
- Measurement and analysis of wind turbine blade mechanical load vol.7, pp.1, 2015, https://doi.org/10.1063/1.4905466
- Deep neural network-based wind speed forecasting and fatigue analysis of a large composite wind turbine blade pp.2041-2983, 2018, https://doi.org/10.1177/0954406218797972
- Towards a digital twin realization of the blade system design study wind turbine blade vol.28, pp.5, 2014, https://doi.org/10.12989/was.2019.28.5.271
- Enhancing aerodynamic performance of NACA 4412 aircraft wing using leading edge modification vol.29, pp.4, 2019, https://doi.org/10.12989/was.2019.29.4.271
- Flutter study of flapwise bend-twist coupled composite wind turbine blades vol.32, pp.3, 2021, https://doi.org/10.12989/was.2021.32.3.267
- Multi-objective structural optimization of a wind turbine blade using NSGA-II algorithm and FSI vol.93, pp.6, 2014, https://doi.org/10.1108/aeat-02-2021-0055