DOI QR코드

DOI QR Code

호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석

Discrepancies between Calculated and Delivered Dose Distributions of Respiratory Gated IMRT Fields according to the Target Motion Ranges for Lung and Liver Cancer Patients

  • 김영국 (고신대학교 의과대학 방사선종양학교실) ;
  • 임상욱 (고신대학교 의과대학 방사선종양학교실) ;
  • 최지훈 (고신대학교 의과대학 방사선종양학교실) ;
  • 마선영 (고신대학교 의과대학 방사선종양학교실) ;
  • 정태식 (고신대학교 의과대학 방사선종양학교실) ;
  • 노태익 (동아대학교 물리학과)
  • Kim, Youngkuk (Department of Radiation Oncology, Kosin University College of Medicine) ;
  • Lim, Sangwook (Department of Radiation Oncology, Kosin University College of Medicine) ;
  • Choi, Ji Hoon (Department of Radiation Oncology, Kosin University College of Medicine) ;
  • Ma, Sun Young (Department of Radiation Oncology, Kosin University College of Medicine) ;
  • Jeung, Tae Sig (Department of Radiation Oncology, Kosin University College of Medicine) ;
  • Ro, Tae Ik (Department of Physics, Dong-A University)
  • 투고 : 2014.10.15
  • 심사 : 2014.11.19
  • 발행 : 2014.12.30

초록

호흡연동방사선치료(respiratory-gated radiation therapy)법을 적용한 세기조절방사선치료(intensity-modulated radiation therapy, IMRT) 시 환자의 호흡에 의한 장기 움직임 크기에 따른 계산된 선량분포와 측정된 선량분포의 차이를 분석하고자 한다. 치료를 완료한 폐암과 간암 환자 4명을 선택하였다. 한 환자당 5개의 조사면 총 20개의 조사면을 갠트리 각도를 모두 $0^{\circ}$로 변경하여 치료계획시스템(Eclipse Ver. 8.1, Varian Medical Systems, Inc., USA)으로 다시 계산하였다. 치료계획과 동일한 조건으로 각 IMRT 조사면을 2차원 이온전리함배열(MatriXX, IBA Dosimetry, Germany)을 자체 제작한 호흡모 플랫폼(respiratory simulating platform)위에 놓고 0, 1.0, 2.0, 및 3.0 cm 씩 호흡 움직임을 모사하여 일반적으로 치료에 사용되는 연동창 범위인 30~70% 위상을 선택하여 호흡연동방사선치료법으로 조사하여 선량분포를 측하였다. 계산된 선량분포와 측정된 선량분포의 2차원적 비교를 위해 소프트웨어(Omni-pro I'mRT, IBA Dosimetry, Germany)를 이용하여 3 mm/3%의 기준으로 감마 지표(gamma index)로 비교하였다. 움직임이 없을 때 감마 지표의 합격률이 평균 98.63% 였으며, 움직임을 1.0, 2.0, 3.0 cm으로 모사할 경우 합격률이 각각 평균 98.59%, 97.82%, 95.84%로 낮아졌다. 따라서 실제 환자에 대해 호흡연동방사선치료법을 적용한 세기조절방사선치료 시 병소의 움직임이 2 cm가 넘을 경우 ITV (internal target volume) 여유분을 크게 설정하거나 연동창을 좁게 선택하여야한다.

To see the discrepancies between the calculated and the delivered dose distribution of IMRT fields for respiratory-induced moving target according to the motion ranges. Four IMRT plans in which there are five fields, for lung and liver patients were selected. The gantry angles were set to $0^{\circ}$ for every field and recalculated using TPS (Eclipse Ver 8.1, Varian Medical Systems, Inc., USA). The ion-chamber array detector (MatriXX, IBA Dosimetry, Germany) was placed on the respiratory simulating platform and made it to move with ranges of 1, 2, and 3 cm, respectively. The IMRT fields were delivered to the detector with 30~70% gating windows. The comparison was performed by gamma index with tolerance of 3 mm and 3%. The average pass rate was 98.63% when there's no motion. When 1.0, 2.0, 3.0 cm motion ranges were simulated, the average pass rate were 98.59%, 97.82%, and 95.84%, respectively. Therefore, ITV margin should be increased or gating windows should be decreased for targets with large motion ranges.

키워드

참고문헌

  1. Ezzell GA, Burmeister JW, Dogan N, et al: IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119, Med Phys 36:5359-5373 (2009) https://doi.org/10.1118/1.3238104
  2. Ahn WS, Cho BC: Intensity modulated radiation therapy commissioning and quality assurance: Implementation of AAPM TG119. Progress in Medical Physics 22:99-105 (2011)
  3. Hussein M, Rowshanfarzad P, Ebert MA, Nisbet A, Clark CH: A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiother Oncol 109:370-376 (2013) https://doi.org/10.1016/j.radonc.2013.08.048
  4. Arumugam S, Xing A, Goozee G, Holloway L: Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine. Med Dosim 38:376-384 (2013) https://doi.org/10.1016/j.meddos.2013.04.005
  5. Anjum MN, Parker W, Ruo R, Aldahlawi I, Afzal M: IMRT quality assurance using a second treatment planning system. Med Dosim 35:274-279 (2010) https://doi.org/10.1016/j.meddos.2009.09.001
  6. Li G, Zhang Y, Jiang X, et al: Evaluation of the ArcCHECK QA system for IMRT and VMAT verification. Physica Medica 29:295-303 (2013) https://doi.org/10.1016/j.ejmp.2012.04.005
  7. Guillot M, Gingras L, Archambault L, Beddar S, Beaulieu L: Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance. Phys Med Biol 58:4439-4454 (2013) https://doi.org/10.1088/0031-9155/58/13/4439
  8. Sabet M, Rowshanfarzad P, Vial P, Menk FW, Greer PB: Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration. Phys Med Biol 57:N295-N306 (2012) https://doi.org/10.1088/0031-9155/57/15/N295
  9. Vial P, Gustafsson H, Oliver L, Baldock C, Greer PB: Direct-detection EPID dosimetry: investigation of a potential clinical configuration for IMRT verification. Phys Med Biol 54:7151-7169 (2009) https://doi.org/10.1088/0031-9155/54/23/008
  10. Carlone M, Cruje C, Rangel A, et al: ROC analysis in patient specific quality assurance. Med Phys 40:042103-1-042103-7 (2013) https://doi.org/10.1118/1.4795757
  11. Intensity Modulated Radiation Therapy Collaborative Working Group: Intensity modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880-917 (2001) https://doi.org/10.1016/S0360-3016(01)01749-7
  12. Wilcox EE, Daskalov GM, Pavlonnis III, et al: Dosimetric verification of intensity modulated radiation therapy of 172 patients treated for various disease sites: comparison of EBT film dosimetry, ion chamber measurements, and independent MU Calculations. Med Dosim 33:303-309 (2008) https://doi.org/10.1016/j.meddos.2008.03.004
  13. Anjum MN, Parker W, Ruo R, Afzal M: Evaluation criteria for film based intensity modulated radiation therapy quality assurance. Physica Medica 26:38-43 (2010) https://doi.org/10.1016/j.ejmp.2009.06.002
  14. Roesink JM, Moerland MA, Battermann JJ, Hordijk GJ, Terhaard CHJ: Qantitative dose-volume response analysis of changes in parotid gland function after radiotheraphy in the head-and-neck region. Int J Radiat Oncol Biol Phys 51:938-946 (2001) https://doi.org/10.1016/S0360-3016(01)01717-5
  15. Sasaki R, Soejima T, Matsumoto A, et al: Clinical significance of serum pulmonary surfactant proteins A and D for the early detection of radiation pneumonitis. Int J Radiat Oncol Biol Phys 50:301-307 (2001) https://doi.org/10.1016/S0360-3016(00)01591-1
  16. Lee N, Xia P, Quivey JM, et al: Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 53:12-22 (2002) https://doi.org/10.1016/S0360-3016(02)02724-4
  17. Nutting CM, Convery JD, Cosgrove PV, et al: Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Oncol Biol Phys 48:649-656 (2000) https://doi.org/10.1016/S0360-3016(00)00653-2
  18. Sanguineti G, Cavey ML, Endres EJ, et al: Is IMRT needed to spare the rectum when pelvic lymph nodes are part of the initial treatment volume for prostate cancer? Int J Radiat Oncol Biol Phys 64:151-160 (2006) https://doi.org/10.1016/j.ijrobp.2005.06.026
  19. Luxton G, Hancock SL, Boyer AL: Dosimetry and radiobiologic model comparison of IMRT and 3D conformal radiotherapy in treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 59:267-284 (2004) https://doi.org/10.1016/j.ijrobp.2004.01.024
  20. Wang-Chesebro A, Xia P, Coleman J, Akazawa C, Roach III: Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with three-dimensional conformal radiation therapy in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 66:654-662 (2006) https://doi.org/10.1016/j.ijrobp.2006.05.037
  21. Wang L, Hoban P, Paskalev K, et al: Dosimetric advantage and clinical implication of a micro-multileaf collimator in the treatment of prostate with intensity-modulated radiotherapy. Med Dosim 30:97-103 (2005) https://doi.org/10.1016/j.meddos.2005.03.002
  22. ICRU REPORT 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). International Commission in Radiation Units and Measurements (1999)
  23. Chu SS, Cho KH, Lee CG, Suh CO: Development of conformal radiotherapy with respiratory gate device. Radiat Oncol J 20:41-52 (2002)
  24. Kini VR, Vedam SS, Keall PJ, et al: Patient training in respiratory-gated radiotherapy. Med Dosim 28:7-11 (2003) https://doi.org/10.1016/S0958-3947(02)00136-X
  25. Lim S, Park SH, Ahn SD, et al: Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing. Med Phys 34:4514-4518 (2007) https://doi.org/10.1118/1.2795829
  26. Lim S: Research on the respiratory synchronization system for dynamic tumor tracking radiation therapy. Gyeonggi, Kyonggi University doctorate thesis (2008)
  27. Vedam SS, Kini VR, Keall PJ, et al: Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys 30(4):505-513 (2003) https://doi.org/10.1118/1.1558675
  28. Cervino LI, Du J, Jiang SB: MRI-guided tumor tracking in lung cancer radiotherapy. Phys Med Biol 56:3773-3785 (2011) https://doi.org/10.1088/0031-9155/56/13/003
  29. IBA Dosimetry: I'mRT MatriXX: The new standard in 2D IMRT pre-treatment verification. http://www.iba-dosimetry.com
  30. Ma SY, Choi JH, Jeung TS, Lim S: Quantitative evaluation of gated radiation therapy using gamma index analysis. Progress in Medical Physics 24:198-203 (2013) https://doi.org/10.14316/pmp.2013.24.3.198
  31. Lim S, Ahn SD, Park SH et al: Study of respiration simulating phantom using thermocouple-based respiration monitoring mask. Radiat Oncol J 23:217-222 (2005)
  32. Yoon GJ, Kwak JW, Cho BC et al: Development of new 4D phantom model in respiratory gated volumetric modulated arc therapy for lung SBRT. Progress in Medical Physics 25:100-109 (2014) https://doi.org/10.14316/pmp.2014.25.2.100