DOI QR코드

DOI QR Code

Reaction Route to the Crystallization of Copper Oxides

  • Chen, Kunfeng (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) ;
  • Xue, Dongfeng (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)
  • 투고 : 2014.01.22
  • 심사 : 2014.01.28
  • 발행 : 2014.01.30

Abstract

Copper is an important component from coin metal to electronic wire, integrated circuit, and to lithium battery. Copper oxides, mainly including $Cu_2O$ and CuO, are important semiconductors for the wide applications in solar cell, catalysis, lithium-ion battery, and sensor. Due to their low cost, low toxicity, and easy synthesis, copper oxides have received much research interest in recent year. Herein, we review the crystallization of copper oxides by designing various chemical reaction routes, for example, the synthesis of $Cu_2O$ by reduction route, the oxidation of copper to $Cu_2O$ or CuO, the chemical transformation of $Cu_2O$ to CuO, the chemical precipitation of CuO. In the designed reaction system, ligands, pH, inorganic ions, temperature were used to control both chemical reactions and the crystallization processes, which finally determined the phases, morphologies and sizes of copper oxides. Furthermore, copper oxides with different structures as electrode materials for lithium-ion batteries were also reviewed. This review presents a simple route to study the reaction-crystallization-performance relationship of Cu-based materials, which can be extended to other inorganic oxides.

Keywords

References

  1. K. Chen and D. Xue, "Cuprous Oxide: The Only Example that Features Nanoscience and Nanotechnology." Chap. 10, Encyclopedia of Semiconductor Nanotechnology Edited by Ahmad Umar, Volume 2, American Scientific Publishers, 2012.
  2. M. Yin, C. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O'Brien, J. Am. Chem. Soc. 127, 9506 (2005). https://doi.org/10.1021/ja050006u
  3. K. Chen, S. Song, and D. Xue, CrystEngComm 15, 144 (2013). https://doi.org/10.1039/c2ce26544c
  4. K. X. Yao, X. M. Yin, T. H. Wang, and H. C. Zeng, J. Am. Chem. Soc. 132, 6131 (2010). https://doi.org/10.1021/ja100151f
  5. Y. Sui, W. Fu, Y. Zeng, H. Yang, Y. Zhang, H. Chen, Y. Li, M. Li, and G. Zou, Angew. Chem. Int. Ed. 49, 4282 (2010). https://doi.org/10.1002/anie.200907117
  6. Y. Si, K. Chen, and D. Xue, "Powder Engineering, Technology and Applications." (J. M. Barker Ed.), Chap. 6, Nova Science Publishers, New York, 2010.
  7. L. O. Grondahl, Rev. Mod. Phys. 5, 141 (1933). https://doi.org/10.1103/RevModPhys.5.141
  8. W. R. G. Atkins and H. H. Poole, J. Mar. Biol. Assoc. UK 19, 67 (1933). https://doi.org/10.1017/S0025315400055788
  9. D. Snoke, Science 273, 1351 (1996). https://doi.org/10.1126/science.273.5280.1351
  10. G. G. Jernigan and G. A. Somorjai, J. Catal. 147, 567 (1994). https://doi.org/10.1006/jcat.1994.1173
  11. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. Kondo, and K. Domen, Chem. Commun., 357 (1998).
  12. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature 407, 496 (2000). https://doi.org/10.1038/35035045
  13. S. T. Shishiyanu, T. S. Shishiyanu, and O. I. Lupan, Sens. Actuators B 113, 468 (2006). https://doi.org/10.1016/j.snb.2005.03.061
  14. M. Miyake, Y. C. Chen, P. V. Braun, and P. Wiltzius, Adv. Mater. 21, 3012 (2009). https://doi.org/10.1002/adma.200802085
  15. C. H. Kuo, Y. C. Yang, S. Gwo, and M. H. Huang, J. Am. Chem. Soc. 133, 1052 (2011). https://doi.org/10.1021/ja109182y
  16. K. Chen and D. Xue, CrystEngComm 14, 8068 (2012). https://doi.org/10.1039/c2ce26084k
  17. K. Chen and D. Xue, CrystEngComm 15, 1739 (2013). https://doi.org/10.1039/c2ce26500a
  18. K. Chen and D. Xue, Nanosci. Nanotechnol. Lett. 4, 1 (2012). https://doi.org/10.1166/nnl.2012.1282
  19. K. Chen, Y. Si, and D. Xue, Mod. Phys. Lett. B 23, 3753 (2009).
  20. Y. Si and D. Xue, Mod. Phys. Lett. B 23, 3851 (2009). https://doi.org/10.1142/S0217984909021910
  21. K. Chen and D. Xue, Nanosci. Nanotechnol. Lett. 3, 383 (2011). https://doi.org/10.1166/nnl.2011.1171
  22. K. Chen, Y. Si, and D. Xue, Nanosci. Nanotechnol. Lett. 3, 423 (2011). https://doi.org/10.1166/nnl.2011.1173
  23. K. Chen and D. Xue, Mater. Focus 1, 65 (2012). https://doi.org/10.1166/mat.2012.1010
  24. Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, J. Am. Chem. Soc. 133, 18931 (2011). https://doi.org/10.1021/ja2080345
  25. K. Chen and D. Xue, Mater. Focus 1, 203 (2012). https://doi.org/10.1166/mat.2012.1031
  26. K. Chen and D. Xue, Mater. Focus 2, 35 (2013). https://doi.org/10.1166/mat.2013.1046
  27. K. Chen, J. Liu, and D. Xue, Energy Environ. Focus 1, 50 (2012). https://doi.org/10.1166/eef.2012.1006
  28. K. Chen, J. Liu, and D. Xue, Energy Environ. Focus 1, 109 (2012). https://doi.org/10.1166/eef.2012.1015
  29. K. Chen, S. Song, D. Xue, J. Appl. Crystallogr. 46, 1603 (2013). https://doi.org/10.1107/S0021889813022322
  30. J. Liu, H. Xia, D. Xue, and L. Lu, J. Am. Chem. Soc. 131, 12086 (2009). https://doi.org/10.1021/ja9053256
  31. F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 24, 1089 (2012). https://doi.org/10.1002/adma.201104691
  32. K. Chen and D. Xue, Phys. Chem. Chem. Phys. 15, 19708 (2013). https://doi.org/10.1039/c3cp53787k
  33. J. Xu, and D. Xue, Acta Mater. 55, 2397 (2007). https://doi.org/10.1016/j.actamat.2006.11.032
  34. X. Zhao, X. Ren, C. Sun, X. Zhang, Y. Si, C. Yan, J. Xu, and D. Xue, Funct. Mater. Lett. 1, 167 (2008). https://doi.org/10.1142/S1793604708000393
  35. K. Chen, D. Xue, J. Adv. Microsc. Res. 7, 264 (2012).
  36. J. Liu, and D. Xue, Adv. Mater. 20, 2622 (2008). https://doi.org/10.1002/adma.200800208
  37. C. Yan, and D. Xue, Adv. Mater. 20, 1055 (2008). https://doi.org/10.1002/adma.200701752
  38. K. Chen and D. Xue, J. Phys. Chem. C 117, 22576 (2013). https://doi.org/10.1021/jp4081756
  39. K. Chen, S. Song, K. Li, D. Xue, CrystEngComm 15, 10367 (2013). https://doi.org/10.1039/c3ce41802b
  40. K. Chen, Y. D. Noh, K. Li, S. Komarneni, D. Xue, J. Phys. Chem. C 117, 10770 (2013). https://doi.org/10.1021/jp4018025
  41. K. Chen, S. Song, D. Xue, CrystEngComm 15, 10028 (2013). https://doi.org/10.1039/c3ce41745j

Cited by

  1. Room temperature light-induced recrystallization of Cu2O cubes to CuO nanostructures in water vol.16, pp.36, 2014, https://doi.org/10.1039/C4CE01174K
  2. Polymorphic crystallization of Cu2O compound vol.16, pp.24, 2014, https://doi.org/10.1039/C4CE00339J
  3. An investigation on the tuning effect of glucose-capping on the size and bandgap of CuO nanoparticles vol.27, pp.2, 2016, https://doi.org/10.1016/j.apt.2016.01.006